وزارت علوم، تحقیقات و فناوری

برنامه‌درسی

دوره: دکتری

رشته مهندسی محيط زیست

با ۵ گرایش:

۱. آب و فاضلاب، ۲. منابع آب، ۳. آلودگی هوا، ۴. مواد زائد جامد و ۵. سواحل

گروه: فنی و مهندسی

(پیشنهادی دانشگاه تهران)

مصوبه جلسه 861 مورخ ۹۴/۱۲/۰۷ شورای عالی برنامه ریزی آموزشی
بسم الله الرحمن الرحیم

برنامه درسی دکتری رشته مهندسی محیط زیست

گروه: فنی و مهندسی

رشته: مهندسی محیط زیست

گروه‌های: آب و فاضلاب، منابع آب، آلودگی هوا، موانع زائد جامد و سواحل

ماده 1- به استناد مصوبه جلسه شماره 861 تاریخ 1394/3/16 شورای عالی برنامه‌ریزی آموزشی در مورد تایید برنامه‌های مدون و دارای مجوز اجرای دانشگاه‌های گروه بک تا زمان پاژنگری در شورای عالی برنامه‌ریزی آموزش عالی و با عنايت به مصوبه جلسه مورخ 1395/9/14 شورای عالی برنامه‌ریزی آموزشی دانشگاه تهران در مورد برنامه مهندسی محیط زیست در مقطع دکتری این برنامه تا زمان پاژنگری مصوب تلقی می‌شود.

[署名]

مدیر شورای عالی برنامه‌ریزی آموزشی
دانشگاه تهران

مشخصات کلی برنامه درسی و سرفصل دروس

دوره: دکتری
رشته: مهندسی محيط زیست با 5 گرایش:
1- آب و فاضلاب
2- منابع آب
3- آلودگی هوا
4- مواد زائد جامد
5- سواحل

دانشکده محيط زیست

مصوب جلسه مورخ 95/14 شهریور برنامه ریزی، گسترش و نظارت آموزشی دانشگاه

این برنامه بر اساس آیین نامه وزارتی تقییات برنامه ریزی درسی به دانشگاه‌های دارای هیات ممیزه توسط اعضای هیات علمی گروه مهندسی عمران - محیط زیست دانشگاه‌های محیط زیست بازگری شده و در سیستم پاسخ‌دهنده جلسه شورای برنامه ریزی گسترش و نظارت آموزشی دانشگاه مورخ 95/14 به تصویب رسیده است...
مصوبه شورای پرتره ریزی، کسترش و نظارت آموزشی دانشگاه تهران در خصوص برنامه درسی

رشته مهندسی محیط زیست با 5 گرایش

مقطع دکتری

برنامه مدرس دوره دکتری رشته مهندسی محیط زیست با 5 گرایش که توسط اعضا هیات علمی گروه مهندسی عمران - محیط زیست دانشگاه محیط زیست پایگاهی شده است با اکثریت آراء به تصویب رسید.

- این برنامه از تاریخ تصویب لازم اجرای است.
- هر نوع تغییر در برنامه مجاز نیست مگر آن که به تصویب شورای پرتره ریزی، کسترش و نظارت آموزشی دانشگاه بررسی شود.
- این برنامه درسی در آخرین روز برنامه درسی دکتری مهندسی محیط زیست محصول چندمین شماره ۲۷ مهر ۱۳۹۲/۱۲/۱۱ بررسی شد.

شورای عالی پرتره ریزی وزارت فرهنگ و آموزش عالی گردد است.

فریبرز همایانی
دبیر شورای برنامه ریزی، کسترش و نظارت آموزشی دانشگاه

معاون آموزشی دانشگاه

رای صادره جلسه مورخ ۹۵/۰۹/۱۴ شورای پرتره ریزی، کسترش و نظارت آموزشی دانشگاه در مورد یافته‌های پرتره درسی رشته مهندسی محیط زیست با 5 گرایش در مقطع دکتری مصوب است.

به واحد دفتری ابلاغ شد.

محمود نیلی احمد آبادی
رئیس دانشگاه تهران
مشخصات کلی برنامه درسی و سرفصل دروس

دوره: دکترای تخصصی

رشته: مهندسی محیط زیست

(Environmental Engineering)

با گرایشهای:

(Water and Wastewater) آب و فاضلاب

(Water Resource) منابع آب

(Air Pollution) آلودگی هوا

(Solid Waste) مواد زائد جامد

(Coasts) سواحل
فصل اول
مشخصات کلی دوره:
مشخصات کلی دوره دکترای تخصصی مهندسی محیط زیست

(Environmental Engineering)

1- تعریف و هدف دوره:

دوره دکترای تخصصی مهندسی محیط زیست به دوره‌ای اطلاق می‌شود که تخصصات بالاتر از کارشناسی ارشد را در بر می‌گیرد و مجموعه هماهنگ از فعالیت‌های آموزشی و فعالیت‌های پژوهشی را شامل می‌شود. در دوره دکترای تخصصی دروس طراحی و نظارت بر اجرای پروژه‌های مختلف در زمینه‌های مختلف مهندسی محیط زیست در گراشی های مختلف این رشته و موضع‌های مرتبط باشند و در ضمن قادر به انجام تحقیقات پیشرفته باز نظارت جهت حل مسائل و مشکلات مرتبط با این زمینه در کشور باشند. برای نیل به این هدف، دانشجویان دکترای مفاهیم و مسائل پیشرفته مربوط به این رشته را در پنج گروه تخصصی شامل 1- آب و فاضلاب، 2- منابع آب و آب اصولی، 3- آب و فاضلاب، 4- مواد واحد جامد و 5- ساواحل فرا می‌گیرند. دوره دکترای تخصصی در آناده گرایش‌های کارشناسی ارشد باعث رشد و ارتقاء و تعمیق دانش دانشجویان در گراشی های تخصصی خود می‌شود. در این دوره دانشجویان هر گروه پژوهشی یک تخصصی خود را در زمینه‌های مختلف بی‌دوز مسائل محیط زیست کشور و مسائل زیست محیطی جهانی به انجام می‌رسانند و این دوره این‌ها را برای حل مسائل زیست محیطی با تکنیک علمی متمایز آماده می‌نماید. در مقطع دکترای تخصصی نسبت به مقطع کارشناسی ارشد تحقیقات در سطح بالاتر ادامه پیدا می‌کند و درس‌های آموزشی تیز در سطح پیشرفته‌تر ارائه می‌شوند.

در همین راستا درس‌های طراحی شده برای این رشته در دوره‌های ارشد و دکترای محیط زیست و کارشناسی ارشد به دو دسته ارائه می‌شوند. دسته اول: دروس چیزمانی که باشد که برای دانشجویان طراحی شده است که دروس مورد نیاز را در دوره کارشناسی ارشد که شناخت درس‌های دیگر داشته باشند. دسته دوم دروس اختیاری تخصصی هر گروه در مقطع دکترای محیط زیست که دانشجوی هر گروشی می‌باشد که باشد و درس‌های اختیاری تخصصی مربوط به گروش خود اخیر نماید.
ضرورت و اهمیت دوره ۲

از انجاکه مر یک از گراش‌های مربوط به مهندسی مکانیک زیست از اهمیت ویژه‌ای برخوردار هستند، لذا در این‌جا اهمیت ضرورت و اهمیت مر یک از این گراش‌ها بصورت مجزا ارائه شده‌است.

۱- ضرورت و اهمیت گراش آب و فاضلاب

محدودیت‌های منابع آب و افرازیابی جمعیت کشور، متوسط سرانه آب تجدید شونده را کاهش داده است و پیش‌بینی‌های شوکه که در سال ۱۳۰۰ سرانه آب تجدید شونده به حدود ۱۲۰۰ متر مکعب کاهش یابیده‌اند، به‌طور ویژه کشور به مرحله‌ی نهایی افت است. عدم غیرممکن حذف آب و توزیع نامناسب زمانی و مکانی این منابع، به‌طور ویژه آنها در بخش‌های مختلف با باین افت است. در بخش مصرف‌های صرف نظر از مصرف‌های صرف نظر بی‌رو به شوراها، به دلیل فر سوءتategorie‌ای که‌ها انتقال و توزیع آب می‌باشد، میزان ازافات حداکثر ۳۰ درصد براوردشده‌ی شود. آلودگی‌های منابع آب تو سطح فاضلاب‌های شهری و روستایی مسئله‌ی بحران آب را در ایران با جالیتهای جدید ریور نموده‌است.

رشد سریع شهرنشین‌های در کنار سایر مشکلات مانند بیکاری، تحریم‌های اقتصادی و ... موجب شده‌ت‌ا در به‌روز سیر نشدن شیک‌های جمع‌آوری و انتقال فاضلاب، انتقال و توزیع آب و تاسیسات تصفیه‌آب و فاضلاب است. لازم صورت نگیرد. بر اساس داده‌های مربوط به حدود ۷۶ میلیون تفر خواهد رسد که ۸۱ میلیون نفر آن در شهرها سکونت خواهد داشت در این سال تنها ۱۲۰۰ جمعیت کشور به حدود ۱۲۰۰ میلیون تفر خواهد رسد که ۱۹ شهر خواهد رسد. ایجاد تاسیسات تصفیه‌آب و توزیع آب و معتقد است ان احداث شیک‌های جمع‌آوری، انتقال و تصفیه فاضلاب نیاز به نیروی متخصص برای طراحی، بهره‌برداری و نگهداری از این تاسیسات دارد. از طرفی مصرفی خانواری جدید در زمینه کنترل و کاهش آلودگی‌های آب و شناخت ما از آلودگی‌ها بسیب توسعه استانداردها شده است. با توجه به عدم حذف ریزآلودگی‌ها توسط روش‌های معکوم تصفیه و ورود آنها به محیط زیست، بررسی روش‌های پیشرفت‌های زیست‌شناسی و مدیریت ریسک‌ها و مواجهه با الکتریسم موجود در آب و فاضلاب، برای کارشناسان این رشته الزامی می‌باشد. ارزیابی و مدیریت ریسک آلودگی‌ها می‌تواند راهکارهای مناسب‌تر برای مراجع تخصصی گیری در کشور فراهم آورد. آب خروجی از تصفیه‌خانه‌های فاضلاب به نام بسیار شناخته‌
ضرورت و اهمیت گرایش منابع آب

با توجه به نوسو کردن آب و شکر از قسمت کشاورزی و رشد سریع جمعیت کشور نیاز به حفاظت کیفی و کمی منابع آب (سطحی و زیرزمینی) محسوس می‌شود. کارشناسان و مدیران منابع آب کشور از افرادی که به کشاورزی و فناوری‌های جدید و همچنین توسعه استانداردهای کیفی آب متعاقب و استاندارد تخلیه اجازه به مهارت و دیدگاه را به دست آورده‌اند. پس از اینکه به مجزایی بازگردند، سبب شده است تا جهت تربیت نیروی انسانی متخصص برای مواجهه با مسائل فوق بازترکی دیوره درس‌گرایش آب و فاضلاب امری اجتناب‌نامه تایید به شروری باشد.

۲-۴ منابع آب

از جمله این منابع آب، منابع آب زیرزمینی مهم‌ترین کشور می‌باشند که علاوه بر منابع آب سطحی منابع آب زیرزمینی نیز از اهمیت ویژه ای برخوردار است. مناسب‌ترین ذخیره منابع آب زیرزمینی کشور بصرف حاصل کشش است زیرا حجم بزرگ مدارات بیشتر از مقدار آب است که در نزول آب در سیستم گردیده و به‌طور دوباره به منابع آب زیرزمینی علاوه بر تخریب سفرهای آبی، خطر آسیب‌پذیری آن‌ها را در بر می‌آورد. به‌طور کلی در منابع آب زیرزمینی ضرورت برخورداری از منابع آب زیرزمینی علاوه بر تخریب سفرهای آبی، خطر آسیب‌پذیری آن‌ها را در بر می‌آورد.
ضرورت‌ها و اهمیت گرایش آلودگی هوا

فالیته‌های انسانی، رشد صنعتی و رشد جمعیت در دویست سال اخیر باعث بروز پدیده آلودگی هوا در اکثر مناطق جهان شده است. این مسئله به گونه‌ای است که می‌توان مشکلات ناشی از آلودگی هوا را در پی سیاری یا مناطق صنعتی و برخی از شهرهای بزرگ مزاحمه نمود. امروزه اثرات زیان‌بار آلودگی هوا به انسان‌ها، حیوانات، گیاهان و ساختارهایی با نتایج تغییری کاملاً مشابه شده است. از میان این اثرات منفی ذکر شده، تاثیر آلودگی بر سلامت انسان‌ها به‌طور خاص اهمیت است به‌طوری که بعضاً از این اثرات در گونه‌های مدت قابل تشخیص یوگه و پسیاری دیگر در دارای مدت اثرات پی‌سیار منفی روی انسان می‌گذارند که بسیاری قابل تشخیص نیستند.

از سوی دیگر مسئله آلودگی هوا یکی از مسئله‌های جهانی می‌باشد که بار دوست اثرات این نازک شدن زمین در اثر پدیده آلودگی هوا از آنجا که آلودگی در جو منتشر می‌شود، بررسی‌ها به توده‌های آلودگی هوا از یک منطقه به منطقه دیگر انتقال می‌یابد و در هنگام این انتقال با یکدیگر یا با سایر اجزای هوا جوی آلودگی شده و آلودگیهای ثانویه را به وجود می‌آورد. از جمله این آلودگی‌های ثانویه از سطحی می‌باشد که به سیار برای سلامت انسان ضرر است. از دیگر آلودگی‌های ثانویه می‌توان به بیماری‌های آسپیدی اشاره کرد که در اثر ترکیب سولفات و نیترات با بخار آب موجود در جو به وجود می‌آید. بازاریان می‌توان آلودگی هوا را در مفاهیمی خانگی، شهری، منطقه‌ای و جهانی مورد بررسی قرار داد. با توجه به گسترش قیاس‌های آلودگی از خانگی تا جهانی، بررسی‌های آلودگی هوا در هر یک از این مفاهیمها مهم‌ترهایی در گیری پیچیدگی‌ها و مسائل مربوط به آن مفاهیم می‌باشد و نمی‌توان بدون آگاهی و اشتراف به مسائل مربوطه، پیدایش آلودگی هوا را مورد ارزیابی قرار داد و در مورد آن برنامه‌بری و تصمیم‌گیری نمود.

آلودگی‌های جوی از دو دسته از منابع آلودگی شامل منابع آلودگی ثابت مانند مرکز صنعتی، مناطق مسکونی، مناطق تجاری و غیره و منابع آلودگی جابجای مانند کشورهای هواپیمایی و کشتی‌ها وارد جو می‌شوند. امروزه شناسایی منابع آلودگی و سنگش آلودگی آنها، روش‌های کنترل و کاهش آلودگی‌ها، نحوه پیشگیری و انتقال آلودگی‌ها و شناسایی اثرات آلودگی از سیستم به‌طور متمایز در سه جوامع بشری می‌باشد به‌طوری که در کشورهای توسعه‌یافته سرمایه‌گذاری و توانایی روزی کنترل و کاهش آلودگی‌ها صورت گرفته است. پس از سازمان‌های بین‌المللی و برنامه‌ریزی
دریک که و کنترل آلاینده‌ها می‌باشند تصمیم گیرندگان اطلاعات کافی و جامع راجع به مسائل مطرح‌شده در بالا داشته باشند.

با توجه به گستردگی و پیچیدگی مشکلات آلودگی هوای تهرانی در این پیاده، آلودگی هوای صورت یک گروه علمی و کاربردی مورد توجه قرار می‌گیرد. از آنگاه آلودگی هوای شرکت منیز به شکل دیگر مشکل اجتماعی برود کرده است. بنابراین بایستی دروس مربوط به این جرایم، دانشگاهی که می‌تواند مبنا همچون همکاری، کنترل و کاهش آلاینده‌ها، توزیع آلاینده‌ها و شباهای متغیر آلاینده‌ها را درب‌دار داشته باشد، لازم و ضروری می‌باشد.

2- ضرورت و اهمیت گزارش مواد زائد جامد

مدیریت پسماند همانند سایر جنبه‌های زیست محیطی در ایران بسیار جوانی است. از حذف دو دهه گذشته که سازمان‌های پزشکی و یا مدرک می‌پرسند در برخی شهرهای کشور شکل گرفتند، نیاز به توسعه داشته، فنی در این رابطه بیش از آن شکل گیردید. در حال مالیات گذشته و گسترش فناوری از یک سو و نیاز فرازیده به رفع دیگر مشکلات مربوط به مدیریت ناهماهنگ بسیاری اهمیت شد. به هنگام انسداد گزارش‌های باریک و مراکز، مدیریت پسماند در گروه بهنی‌سالی محبوبی زندگانه تهران شکل گرفت.

مدیریت ناهماهنگ بسیاری از دو دهه گذشته و موجب زیان به محیط زیست می‌شود. از سویی آلودگی‌های دیگری می‌باشد بازده دفع ناهماهنگ پسماند که باعث انتشار آلاینده‌های مختلف بوده و بارز خان و آب از طریق انتشار شیشه و تغییر شیشه، که به دفع غیر اصولی پسماند می‌شود و از سوی دیگر به هدر دادن مواد و انرژی به واسطه عدم پایداری بسیار، متأسف با اصول توسعه پایدار می‌باشد.

پسماندهای شهری با تولید سرانه حرفه 800 تا 1000 گرم در روز ضمیم اینها پنالتی آلوده و به همان‌طور وقتی می‌تواند صورت گرفت، می‌تواند سهم قابل توجهی از آلودگی محیطی به صورت مواد و چیزی به صورت نهایی داشته باشد، در طول می‌تواند مثل روند حرفه 800 تا 1000 گرم سیستم شهری تولید می‌شود. مشکلات مرتبط به دفع غیر اصولی پسماند به ویژه در مناطقی با حساسیت‌های زیست محیطی بالاتر نظیر شهرهای لاتین.
کشور، عمدها مربوط به انتشار شیره‌ای با بار آبی می‌باشد که به سهولت وارد، منابع آب می‌شود. انتشار کنترل‌شده قاژه‌ای حامل از محلهای دفن غیر اصولی پسماند نیز مهم قابل توجهی در افزایش اثرات غلخانه‌ای دارد. از طرف دیگر پسماندهای صنعتی که بخش قابل توجهی از آنها دارای پسماندهای خطوانکی می‌باشند، نیازمند مدیریت صحیح در قالب تصمیم‌گیری و دفع منابع می‌باشند که این مهم نیز در کشور کمتر مورد توجه قرار گرفته است.

با کمیسیون فناوری مربوط به پسماند در دنیا، لازم است در ایران نیز ضمن توجه به سیستم‌های کنترل آلودگی زیست محیطی ناشی از پسماند، به روش‌های بازیابی مواد و انرژی نیز توجه شود. در همین راستا ضروری است با گسترده‌ای از سطح کارشناسی ارشد، پژوهش‌های عمده‌ای کاربردی و رابطه‌ای بین نیاز در این زمینه گسترش یابد تا بتواند در آینده شاهد شکل‌گیری سیستم‌های پایدار مدیریت پسماند در کلیه شهرها و بخش‌ها و نیز طراحی و تولید تجهیزات مربوطه در داخل کشور باشد.

2-5 ضرورت و اهمیت گواهی سواحل

از جمله مسائل اساسی محیط زیستی که در حال حاضر کشور ایران با آن روی می‌باشد مسائل مرتبط با محیط زیست سواحل و دریا می‌باشد. کشور جمهوری اسلامی ایران با قرارگیری در کنار سه دریای مهم و استراتژیک خلیج فارس، دریای عمان و دریای خزر و با در اختیار داشتن بیش از ۳۰۰،۰۰۰ کیلومتر مربع آبی از نمادهای اقتصادی و اجتماعی، عظیم اهمیت برخورد شده است و به‌همراهی از دریاها و سواحل ایران بحلواه تایید و تولید موارد غذایی و دارویی، معادن و نفت، کشتیرانی و حمل و نقل، گردشگری و ... نقش اساسی در توسعه اقتصادی، اجتماعی و سیاسی کشور ایفا نموده و خواهد نمود.

اولویت توسعه‌های بشری در مناطق ساحلی و اقیانوسی به‌همراهی از دریا و ساحل موجب تخلیه بی‌رویه موارد زاند، شهری، صنعتی، کشاورزی، معدنی، کشتیرانی و .. به سواحل و محیط‌های دریایی شده و این مناطق را با مشکلات اساسی محیط زیستی در مقیاس‌های مختلف و به‌همراه نموده است و این مشکلات به‌خصوص برای کشور ایران بحلواه شرایط فراصتی در سواحل و دریاهای ایران از جمله بی‌پسماند دریای خزر و نیمه‌بسمتی بودن خلیج فارس، تمرکز

فعالیت‌های نفتی و توسه‌های شدید اخیر در مناطق ساحلی، از اهمیت ویژه برخوردار می‌باشد.
تشکیل فعالیت‌های مربوط به محیط زیست در برابر توجه جهانی را به این موضوع مهم، خلبان، نموده و اقدامات
پردازش‌های در سطح جهانی برای حفاظت از محیط زیست دریایی و برقراری توسعه پایدار سواحل و دریا در دست
انجام است. با توجه به اینکه وجود نیروی متخصص تربیت شده در زمینه محیط زیست دریایی مهم‌ترین عامل برای
کامیابی و با حذف آلودگی و حفاظت از محیط زیست سواحل و دریا می‌باشد. دانش‌های و مراکز تحقیقاتی دنیا با
تأسیس رشته‌های آموزشی در زمینه محیط زیست دریایی از جمله مهندسی محیط زیست سواحل و دریا به‌صورت
گسترده به این موضوع پرداخته‌اند. هدف از ایجاد گروه سواحل در دوره کارشناسی ارشد مهندسی محیط زیست،
تربیت مهندسی می‌باشد که دارای دانش و سیستم‌های مربوط به تربیت افراد و توانایی مدیریت در این
طرح‌ها و انجام طرح‌های لازم برای کنترل آلودگی و تخریب محیط زیست سواحل دریا را داشته باشند.

با توجه به مطالعه‌هایی که در مورد مصرف یکی از علاوه‌های شدید یک میانگین درجه‌بندی شده در زمینه مهندسی محیط
زیست در واقع بیشترین نبوده است که از همیشه مهندسی محیط زیست که به یکی از ساختمان‌های
اقتصادی‌های است را در این نمای کم‌نمایی نیست. به همین منفی‌ها دانش‌گری محیط زیست دانشگاه تهران، قصد دارد
چهار گروه می‌باشد که در این رشته شامل 1- آب و فاضلاب، 2- منابع آب، 3- آلودگی هوا و 4- مواد زانگ‌داده، را مورد
پرداختگری
اساس قرار می‌دهد و گروه سواحل را به عنوان گروهی پنجم به گروه‌های موجود اضافه نماید.

۲- طول دوره و شکل نظام
الف- طول دوره دکترای تخصصی: مدت اساسی این دوره ۴ سال می‌باشد. پذیرفته شدن در صورت
دارای بودن مطالعات یا اساس آزمون‌های پزشکی قبل از سال این دوره را به پایان بررسی بند. نظام آزمون‌های آن
واحدی است و در دوره در ۸ نیم‌سال ارائه می‌شود. در مجموع ۴۰ واحد شامل ۱۸ واحد درس و ۱۸ واحد رسانه
دکترای زمان هر نیم‌سال ۱۶ هفته و مدت تدریس یک واحد نظری ۱۶ ساعت و آزمایشگاهی (عملی) ۳۲ ساعت
می‌باشد.

ب- برنامه‌های آزمون‌های و پژوهشی دوره دکترای تخصصی: با توجه به اینکه دوره دکترای تخصصی رشته
مهندسی محیط زیست یک برنامه بین‌رشته‌ای می‌باشد و پایه علمی دانشجویان آن می‌باشد تا در تعداد متدند باند.
بنابراین با توجه به پایه علمی دانشجویان ورودی حداکثر نه ۴ واحد درسی دیگر به عنوان دروس جبرانی نیز می‌تواند در مجموع دروس این دوره در سطح کارشناسی ارشد گنجانده شود که این دروس توسط گروه آموزشی یا استاد راهنما برای دانشجویان ورودی جدید تعیین می‌گردد. تعداد واحدهای آموزشی دوره دکترای تخصصی ۱۸ واحد می‌باشد که همگی آن‌ها از نوع اختیاری می‌باشند و دانشجو می‌تواند از این تعداد واحد را از واحدهای اختیاری ارائه شده توسط گروه تخصصی خود اخذ نماید. بخش پژوهشی دوره دکترای شامل ۱۸ واحد رساله می‌باشد که از انتهای ترم سوم و ابتدا ترم چهارم آغاز می‌شود.

۴- تعداد و نوع واحدها:

- تعداد واحدهای درسی برای به پایان رسیدن دوره دکترای تخصصی ۳۶ واحد بشرح زیر است:
 ۱. دروس کمک‌مورد (حساب مورد - جدول ۱)
 ۲. دروس تخصصی انتخابی هر گرایش: ۱۸ واحد (جدول ۲ تا ۴)
 ۳. رساله دکترای تخصصی: ۱۸ واحد

۵- نتیجه و توانائی‌های فارغ‌التحصیلان:

فارغ التحصیلان این رشته به توجه به دروسی که در دوره دکترای یک دید علمی عمیق در زمینه گرایش تخصصی خود در مهندسی مهیج زیست پیدا می‌کنند و این نگرش علمی با انجام رساله دکترای در گرایش‌های تخصصی با تعقیب بیشتری حاصل می‌شود. در نتیجه این فارغ‌التحصیلان می‌توانند در مراکز مختلفی نقش داشته باشند. کارشناسان این رشته می‌توانند در سازمان‌های درگیر با مسائل مهندسی مهیج زیست از قبیل سازمان حفاظت مهیج زیست، وزارت نیرو، شرکت‌های زیست مهیجی، شرکت‌های مهندسی مشاور، شرکت‌های بیمکاری، شهرداری‌ها، وزارت بهداشت و درمان، وزارت‌های صنعت، وزارت نفت، صنایع پتروشیمی و مراکز صنعتی مختلف و دیگر ارگان‌های دولتی و غیردولتی برای کاراه تحقیقاتی و پژوهشی در زمینه‌های مختلف مهندسی مهیج زیست فعالیت نمایند. برخی از این توانائی‌ها شامل طراحی سیستم‌های کنترلی (آب، آب و فاضلاب، الودگی‌ها، پسماند و سواحل)، طراحی شبکه‌های پاش زیست مهیجی، طراحی سیستم‌های جمع‌آوری و دفع
الاندماج‌ها از محیط‌های مختلف محیط زیست از قبیل آب، هوا و خاک، وضع قوانین و استانداردهای محیط زیست و نظرات بر حسن اجرای پروژه‌های تخصصی در زمینه‌های مختلف مهندسی محیط زیست می‌باشد.

۶- نحوه گزینش دانشجو:
گزینش دانشجو "مطابق ضوابط و مقررات وزارت علوم، تحقیقات و فناوری" انجام می‌شود.
فصل دوم
جدول دروس
جدول ۱: فهرست دروس کمبود برای مقطع دکترای رشته مهندسی محيط زیست

<table>
<thead>
<tr>
<th>رنگ</th>
<th>پیش‌نیاز</th>
<th>ساعت</th>
<th>تعداد واحد</th>
<th>نام درس</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>-</td>
<td>۲۲</td>
<td>-</td>
<td>تصفیه آب</td>
</tr>
<tr>
<td>۲</td>
<td>-</td>
<td>۲۲</td>
<td>-</td>
<td>تصفیه فاضلاب</td>
</tr>
<tr>
<td>۳</td>
<td>-</td>
<td>۲۲</td>
<td>-</td>
<td>شیمی و مکروپولیزی آب و فاضلاب</td>
</tr>
<tr>
<td>۴</td>
<td>-</td>
<td>۲۲</td>
<td>-</td>
<td>مدیریت کیفی منابع آب</td>
</tr>
<tr>
<td>۵</td>
<td>-</td>
<td>۲۲</td>
<td>-</td>
<td>هیدروپتیمیک آب‌های سطحی</td>
</tr>
<tr>
<td>۶</td>
<td>-</td>
<td>۲۲</td>
<td>-</td>
<td>هیدروپتیمیک آب‌های زیرزمینی</td>
</tr>
<tr>
<td>۷</td>
<td>-</td>
<td>۲۲</td>
<td>-</td>
<td>مدل‌سازی رودخانه‌ها</td>
</tr>
<tr>
<td>۸</td>
<td>-</td>
<td>۲۲</td>
<td>-</td>
<td>مراهباتی رودخانه‌ها</td>
</tr>
<tr>
<td>۹</td>
<td>-</td>
<td>۲۲</td>
<td>-</td>
<td>سنجش و ارزیابی آلودگی‌های هوا</td>
</tr>
<tr>
<td>۱۰</td>
<td>-</td>
<td>۲۲</td>
<td>-</td>
<td>خاک‌پذیری بهداشتی</td>
</tr>
<tr>
<td>۱۱</td>
<td>-</td>
<td>۲۲</td>
<td>-</td>
<td>پسماند خطرناک</td>
</tr>
<tr>
<td>۱۲</td>
<td>-</td>
<td>۲۲</td>
<td>-</td>
<td>رودخانه‌های خاک</td>
</tr>
<tr>
<td>۱۳</td>
<td>-</td>
<td>۲۲</td>
<td>-</td>
<td>باریفت سیمانه</td>
</tr>
<tr>
<td>۱۴</td>
<td>-</td>
<td>۲۲</td>
<td>-</td>
<td>رودخانه‌هایی دریاچه و روش‌های کنترل</td>
</tr>
<tr>
<td>۱۵</td>
<td>-</td>
<td>۲۲</td>
<td>-</td>
<td>انرژی‌گیری و آنالیز داده‌های محیط زیست دریایی</td>
</tr>
<tr>
<td>۱۶</td>
<td>-</td>
<td>۲۲</td>
<td>-</td>
<td>مدل‌سازی محیط زیست دریایی</td>
</tr>
</tbody>
</table>

جمع دروس کمبود: ۱۸ ۲۸ ۴۴۸ ۱۸۲ ۲۸
جدول ۲: جدول دروس تخصصی انتخابی گرایش آب و فاضلاب در مقطع دکترای تخصصی

<table>
<thead>
<tr>
<th>ردیف</th>
<th>نام درس</th>
<th>تعداد واحد</th>
<th>ساعت</th>
<th>پیش نیاز</th>
<th>تعادل عمیلی</th>
<th>تحلیل عمیلی</th>
<th>نظری عمیلی</th>
<th>جمع</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>آزمایشگاه آب و فاضلاب</td>
<td>۱</td>
<td>۵۲</td>
<td>-</td>
<td>۲۲</td>
<td>۲۲</td>
<td>-</td>
<td>۵۴</td>
</tr>
<tr>
<td>۲</td>
<td>جمع آوری فاضلاب و کنترل روان آب‌های سطحی</td>
<td>۲</td>
<td>۳۳</td>
<td>-</td>
<td>۲۳</td>
<td>۲۳</td>
<td>-</td>
<td>۴۶</td>
</tr>
<tr>
<td>۳</td>
<td>تصفیه فاضلاب صنعتی</td>
<td>۳</td>
<td>۳۲</td>
<td>-</td>
<td>۲۲</td>
<td>۲۲</td>
<td>-</td>
<td>۵۴</td>
</tr>
<tr>
<td>۴</td>
<td>یاریهای ریسک سلامت امیدهای آب</td>
<td>۲</td>
<td>۳۳</td>
<td>-</td>
<td>۲۳</td>
<td>۲۳</td>
<td>-</td>
<td>۵۶</td>
</tr>
<tr>
<td>۵</td>
<td>تصفیه نوین فاضلاب</td>
<td>۲</td>
<td>۳۳</td>
<td>-</td>
<td>۲۳</td>
<td>۲۳</td>
<td>-</td>
<td>۵۶</td>
</tr>
<tr>
<td>۶</td>
<td>تصفیه آب صنعتی</td>
<td>۲</td>
<td>۳۳</td>
<td>-</td>
<td>۲۳</td>
<td>۲۳</td>
<td>-</td>
<td>۵۶</td>
</tr>
<tr>
<td>۷</td>
<td>موضوعات ویژه در تصفیه آب</td>
<td>۳</td>
<td>۲۵</td>
<td>-</td>
<td>۱۵</td>
<td>۱۵</td>
<td>-</td>
<td>۴۰</td>
</tr>
<tr>
<td>۸</td>
<td>فرآیندهای زیستی در تصفیه فاضلاب</td>
<td>۳</td>
<td>۲۵</td>
<td>-</td>
<td>۱۵</td>
<td>۱۵</td>
<td>-</td>
<td>۴۰</td>
</tr>
<tr>
<td>۹</td>
<td>راهبرد تصفیه‌های آب و فاضلاب</td>
<td>۲</td>
<td>۳۲</td>
<td>-</td>
<td>۲۲</td>
<td>۲۲</td>
<td>-</td>
<td>۵۴</td>
</tr>
<tr>
<td>۱۰</td>
<td>امیدهای آب‌یابی‌الی‌پایدار</td>
<td>۲</td>
<td>۳۲</td>
<td>-</td>
<td>۲۲</td>
<td>۲۲</td>
<td>-</td>
<td>۵۴</td>
</tr>
<tr>
<td>۱۱</td>
<td>طراحی شبکه توزیع آب شهری</td>
<td>۲</td>
<td>۳۲</td>
<td>-</td>
<td>۲۲</td>
<td>۲۲</td>
<td>-</td>
<td>۵۴</td>
</tr>
<tr>
<td>۱۲</td>
<td>آزمایشگاه عملیات واحد در تصفیه آب و فاضلاب</td>
<td>۱</td>
<td>۳۲</td>
<td>-</td>
<td>۲۲</td>
<td>۲۲</td>
<td>-</td>
<td>۵۴</td>
</tr>
<tr>
<td>۱۳</td>
<td>بازیابی و استفاده دوباره آب</td>
<td>۳</td>
<td>۲۵</td>
<td>-</td>
<td>۱۵</td>
<td>۱۵</td>
<td>-</td>
<td>۴۰</td>
</tr>
<tr>
<td>۱۴</td>
<td>تصفیه تکمیلی فاضلاب</td>
<td>۲</td>
<td>۳۲</td>
<td>-</td>
<td>۲۲</td>
<td>۲۲</td>
<td>-</td>
<td>۵۴</td>
</tr>
<tr>
<td>۱۵</td>
<td>طراحی بوراکومه‌ها</td>
<td>۲</td>
<td>۳۳</td>
<td>-</td>
<td>۲۳</td>
<td>۲۳</td>
<td>-</td>
<td>۵۶</td>
</tr>
<tr>
<td>۱۶</td>
<td>فناوری نانو در تصفیه آب و فاضلاب</td>
<td>۲</td>
<td>۳۳</td>
<td>-</td>
<td>۲۳</td>
<td>۲۳</td>
<td>-</td>
<td>۵۶</td>
</tr>
<tr>
<td>۱۷</td>
<td>فرآیندهای جنین در تصفیه آب و فاضلاب</td>
<td>۱</td>
<td>۲۲</td>
<td>-</td>
<td>۱۲</td>
<td>۱۲</td>
<td>-</td>
<td>۲۴</td>
</tr>
<tr>
<td>۱۸</td>
<td>تصفیه ویژه‌ای پیشرفته آب و فاضلاب</td>
<td>۳</td>
<td>۲۵</td>
<td>-</td>
<td>۱۵</td>
<td>۱۵</td>
<td>-</td>
<td>۴۰</td>
</tr>
<tr>
<td>۱۹</td>
<td>پیجکنولوژی در تصفیه آب و فاضلاب</td>
<td>۲</td>
<td>۳۲</td>
<td>-</td>
<td>۲۲</td>
<td>۲۲</td>
<td>-</td>
<td>۵۴</td>
</tr>
<tr>
<td>۲۰</td>
<td>مباحث ویژه</td>
<td>۲</td>
<td>۳۲</td>
<td>-</td>
<td>۲۲</td>
<td>۲۲</td>
<td>-</td>
<td>۵۴</td>
</tr>
<tr>
<td>جمع دروس تخصصی انتخابی</td>
<td></td>
<td></td>
<td>۵۶۷</td>
<td>۱۶۸</td>
<td>۳۲۲</td>
<td>۳۲۲</td>
<td>۱۶۰</td>
<td>۶۴۴</td>
</tr>
</tbody>
</table>

دانشجو می‌تواند از ۱۸ واحد (۹ درس) از دروس تخصصی انتخابی اخذ نماید.
جدول ۲: چندول دروس تخصصی انتخابی گرایش منابع آب در مقطع دکتری تخصصی

<table>
<thead>
<tr>
<th>پیش نیاز</th>
<th>ساعت</th>
<th>تعداد واحد</th>
<th>نام درس</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>۶۶</td>
<td></td>
<td>مهندسی ارژن در مدیریت منابع آب</td>
</tr>
<tr>
<td></td>
<td>۶۶</td>
<td></td>
<td>تحلیل دینامیک سیستم‌های منابع آب</td>
</tr>
<tr>
<td></td>
<td>۶۶</td>
<td></td>
<td>حمل رسواب</td>
</tr>
<tr>
<td></td>
<td>۶۶</td>
<td></td>
<td>تغییر الگوی و منابع آب</td>
</tr>
<tr>
<td></td>
<td>۶۶</td>
<td></td>
<td>مدیریت کیفی روان آب‌های شهری</td>
</tr>
<tr>
<td></td>
<td>۶۶</td>
<td></td>
<td>مدیریت کیفی سطحی</td>
</tr>
<tr>
<td></td>
<td>۶۶</td>
<td></td>
<td>مدیریت کیفی منابع خاکی و پهن‌های آب</td>
</tr>
<tr>
<td></td>
<td>۶۶</td>
<td></td>
<td>توسعه پایدار منابع آب زمینی</td>
</tr>
<tr>
<td></td>
<td>۶۶</td>
<td></td>
<td>قابلیت اطمینان در سیستم‌های منابع آب</td>
</tr>
<tr>
<td></td>
<td>۶۶</td>
<td></td>
<td>قابلیت اطمینان در سیستم‌های منابع آب</td>
</tr>
<tr>
<td></td>
<td>۶۶</td>
<td></td>
<td>تمیز نگهداری هوای طبیعی در محدوده‌های آبی</td>
</tr>
<tr>
<td></td>
<td>۶۶</td>
<td></td>
<td>وکنش آب و رسواب</td>
</tr>
<tr>
<td></td>
<td>۶۶</td>
<td></td>
<td>مدیریت کیفی استخراج و پهن‌های آب</td>
</tr>
<tr>
<td></td>
<td>۶۶</td>
<td></td>
<td>نجات کیفیت آب</td>
</tr>
<tr>
<td></td>
<td>۶۶</td>
<td></td>
<td>کیفیت آب‌های زمینی</td>
</tr>
<tr>
<td></td>
<td>۶۶</td>
<td></td>
<td>نجات کیفیت آب</td>
</tr>
<tr>
<td></td>
<td>۶۶</td>
<td></td>
<td>آموزش زیست محیطی</td>
</tr>
<tr>
<td></td>
<td>۶۶</td>
<td></td>
<td>هیدرولوژی پیشرفته</td>
</tr>
<tr>
<td></td>
<td>۶۶</td>
<td></td>
<td>روش‌های عمدی در دینامیک سیالات</td>
</tr>
<tr>
<td></td>
<td>۶۶</td>
<td></td>
<td>تحلیل و مدیریت ریسک</td>
</tr>
<tr>
<td></td>
<td>۶۶</td>
<td></td>
<td>مهندسی رویکردهای</td>
</tr>
<tr>
<td></td>
<td>۶۶</td>
<td></td>
<td>مباحث و زمینه</td>
</tr>
</tbody>
</table>

جمع دروس تخصصی انتخابی: ۶۸

** دانشجو موظف است ۱۸ واحد (۹ درس) از دروس تخصصی انتخابی اخذ نماید.**
جدول ۴: فهرست دروس تخصصی انتخابی گروه آندوگی هوا در مقطع دکترای تخصصی

<table>
<thead>
<tr>
<th>نام درس</th>
<th>تعداد واحد</th>
<th>ساعت</th>
<th>تعداد عملی</th>
<th>تعداد نظری</th>
<th>درجه</th>
</tr>
</thead>
<tbody>
<tr>
<td>اندوگی و مهیج‌های بسته و روش‌های کنترل آن</td>
<td>۴</td>
<td>۲۲</td>
<td>۲</td>
<td>۲</td>
<td>۴</td>
</tr>
<tr>
<td>کنترل انتشار آلاینده‌های غازی منابع ساکن</td>
<td>۴</td>
<td>۲۲</td>
<td>۲</td>
<td>۲</td>
<td>۴</td>
</tr>
<tr>
<td>کنترل آلاینده‌های صوتی منابع انتشار</td>
<td>۴</td>
<td>۲۲</td>
<td>۲</td>
<td>۲</td>
<td>۴</td>
</tr>
<tr>
<td>شهریه منعی</td>
<td>۴</td>
<td>۲۲</td>
<td>۲</td>
<td>۲</td>
<td>۴</td>
</tr>
<tr>
<td>مدال‌آرا و مهیج‌های بسته</td>
<td>۵</td>
<td>۲۲</td>
<td>۲</td>
<td>۲</td>
<td>۴</td>
</tr>
<tr>
<td>مدل‌آرا و مهیج‌های بسته</td>
<td>۶</td>
<td>۲۲</td>
<td>۲</td>
<td>۲</td>
<td>۴</td>
</tr>
<tr>
<td>مدل‌آرا و مهیج‌های بسته</td>
<td>۷</td>
<td>۲۲</td>
<td>۲</td>
<td>۲</td>
<td>۴</td>
</tr>
<tr>
<td>مدل‌آرا و مهیج‌های بسته</td>
<td>۸</td>
<td>۲۲</td>
<td>۲</td>
<td>۲</td>
<td>۴</td>
</tr>
<tr>
<td>کسب و مهندسی آلوده‌های هوا</td>
<td>۹</td>
<td>۲۲</td>
<td>۲</td>
<td>۲</td>
<td>۴</td>
</tr>
<tr>
<td>انرژی و مهیج‌های بسته</td>
<td>۱۰</td>
<td>۲۲</td>
<td>۲</td>
<td>۲</td>
<td>۴</td>
</tr>
<tr>
<td>خوشه‌های جوی</td>
<td>۱۱</td>
<td>۲۲</td>
<td>۲</td>
<td>۲</td>
<td>۴</td>
</tr>
<tr>
<td>ازیابی و سیاست‌های آلاینده‌های هوا</td>
<td>۱۲</td>
<td>۲۲</td>
<td>۲</td>
<td>۲</td>
<td>۴</td>
</tr>
<tr>
<td>مدیریت آزمایشگاه آلوده‌های هوا</td>
<td>۱۳</td>
<td>۲۲</td>
<td>۲</td>
<td>۲</td>
<td>۴</td>
</tr>
<tr>
<td>تعریف و تدوین با تجهیزات برقی</td>
<td>۱۴</td>
<td>۲۲</td>
<td>۲</td>
<td>۲</td>
<td>۴</td>
</tr>
<tr>
<td>لایه مزرعی خود</td>
<td>۱۵</td>
<td>۲۲</td>
<td>۲</td>
<td>۲</td>
<td>۴</td>
</tr>
<tr>
<td>تعریف و تدوین با تجهیزات برقی</td>
<td>۱۶</td>
<td>۲۲</td>
<td>۲</td>
<td>۲</td>
<td>۴</td>
</tr>
<tr>
<td>کاربردهای آزمایشگاه در محیط زیست</td>
<td>۱۷</td>
<td>۲۲</td>
<td>۲</td>
<td>۲</td>
<td>۴</td>
</tr>
<tr>
<td>طراحی شیک‌های باشی آلودگی هوا</td>
<td>۱۸</td>
<td>۲۲</td>
<td>۲</td>
<td>۲</td>
<td>۴</td>
</tr>
<tr>
<td>اطلاعات جغرافیایی و سنجش از راه دور در آلودگی هوا</td>
<td>۱۹</td>
<td>۲۲</td>
<td>۲</td>
<td>۲</td>
<td>۴</td>
</tr>
<tr>
<td>چسب</td>
<td>۲۰</td>
<td>۲۲</td>
<td>۲</td>
<td>۲</td>
<td>۴</td>
</tr>
<tr>
<td>اعتماد آزمایشگاه آلودگی هوا</td>
<td>۲۱</td>
<td>۲۲</td>
<td>۲</td>
<td>۲</td>
<td>۴</td>
</tr>
<tr>
<td>مباحث ویژه</td>
<td>۲۲</td>
<td>۲۲</td>
<td>۲</td>
<td>۲</td>
<td>۴</td>
</tr>
<tr>
<td>جمع دروس تخصصی انتخابی</td>
<td>۸۸۸</td>
<td>۷۰</td>
<td>۴۴</td>
<td>۴۴</td>
<td>۸۸۸</td>
</tr>
</tbody>
</table>

دانشجو موظف است ۱۸ واحد (۹ درس) از دروس تخصصی انتخابی اخذ نماید.
جدول ۵: فهرست دروس تخصصی انتخابی گرایش مواد زائد جامد در مقطع دکترای تخصصی

ردیف	نام درس	تعداد واحد	تعداد ساعات	تعداد ساعت
1	تبدیل یکساندان به انرژی	۱۲	۲۱	۱۳۵
2	لیزرها در خاکال	۷۵	۱۵	۱۱۲۵
3	مدل‌سازی در مدیریت یکساندان	۷۵	۱۷	۱۳۱۲۵
4	زنوتکنیک زیست محیطی	۷۵	۱۷	۱۳۱۲۵
5	مدیریت زیست پسماند	۷۵	۱۷	۱۳۱۲۵
6	ارزیابی ناخود حیات در مدیریت پسماند	۷۵	۱۷	۱۳۱۲۵
7	زیست‌شناسی زیست محیطی	۷۵	۱۷	۱۳۱۲۵
8	جمع آوری و حمل و نقل پسماند	۰۳	۱۲	۳۶۰
9	بیفناشتهای بی‌خمیسی و محیط زیست در مدیریت پسماند	۰۴	۲۳	۴۶۸۰
10	موارد مدیریت سیستم‌های دیجیتال	۰۴	۲۳	۴۶۸۰
11	مدیریت بسیاردها یکپارچه درمانی	۰۴	۲۳	۴۶۸۰
12	آمار زیست محیطی	۰۴	۲۳	۴۶۸۰
13	مراحل تولید سبز	۰۴	۲۳	۴۶۸۰
14	مدیریت شیرور در خاکال	۰۴	۲۳	۴۶۸۰
15	مدیریت گاز و استحصال انرژی در خاکال	۰۴	۲۳	۴۶۸۰
16	عملیات واحد در پرداشتهای پایدار مواد	۰۴	۲۳	۴۶۸۰
17	دفع پسماند	۰۴	۲۳	۴۶۸۰
18	مدیریت پسماندهای مدفوعی و نفعی	۰۴	۲۳	۴۶۸۰
19	مدیریت و قوانین آلودگی نفعی در خاک	۰۴	۲۳	۴۶۸۰
20	مباحث ویژه	۰۴	۲۳	۴۶۸۰
جمع‌دروس تخصصی انتخابی			۸۱۰	۵۵۵۰
جدول ۶: فهرست دروس تخصصی انتخابی در مقطع دکترای تخصصی

<table>
<thead>
<tr>
<th>پیش‌نیاز</th>
<th>ساعت</th>
<th>تعداد واحد</th>
<th>نام درس</th>
<th>ریده</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>۲۲</td>
<td>-</td>
<td>فیزیک و دینامیک دریا</td>
<td>۱</td>
</tr>
<tr>
<td>-</td>
<td>۲۲</td>
<td>-</td>
<td>دینامیک روب دیسک</td>
<td>۲</td>
</tr>
<tr>
<td>-</td>
<td>۳۷</td>
<td>-</td>
<td>تجزیه‌ی از دور در مطالعات محیط زیست دریایی</td>
<td>۳</td>
</tr>
<tr>
<td>-</td>
<td>۲۲</td>
<td>-</td>
<td>طراحی آتشفشان</td>
<td>۴</td>
</tr>
<tr>
<td>-</td>
<td>۲۲</td>
<td>-</td>
<td>مطالعه‌ی اکوسیستم‌های داخلی دریا</td>
<td>۵</td>
</tr>
<tr>
<td>-</td>
<td>۲۲</td>
<td>-</td>
<td>مدل‌سازی محیط زیست دریایی پیش‌چفزه</td>
<td>۶</td>
</tr>
<tr>
<td>-</td>
<td>۲۲</td>
<td>-</td>
<td>انتزاع‌گیری و آنالیز داده‌های محیط زیست دریایی</td>
<td>۷</td>
</tr>
<tr>
<td>-</td>
<td>۲۲</td>
<td>-</td>
<td>فیزیک و دینامیک دریایی پیش‌چفزه</td>
<td>۸</td>
</tr>
<tr>
<td>-</td>
<td>۲۲</td>
<td>-</td>
<td>مدل‌سازی در مهندسی سواحل</td>
<td>۹</td>
</tr>
<tr>
<td>-</td>
<td>۲۲</td>
<td>-</td>
<td>اختلاط و پخش آب‌های دریا</td>
<td>۱۰</td>
</tr>
<tr>
<td>-</td>
<td>۲۲</td>
<td>-</td>
<td>مدل‌سازی لکه‌های دریایی</td>
<td>۱۱</td>
</tr>
<tr>
<td>-</td>
<td>۲۲</td>
<td>-</td>
<td>مدل‌سازی اکوسیستم‌های دریایی</td>
<td>۱۲</td>
</tr>
<tr>
<td>-</td>
<td>۲۲</td>
<td>-</td>
<td>اکوسیستم‌های دریایی</td>
<td>۱۳</td>
</tr>
<tr>
<td>-</td>
<td>۲۲</td>
<td>-</td>
<td>دیتامیک آب‌های دریایی</td>
<td>۱۴</td>
</tr>
<tr>
<td>-</td>
<td>۲۲</td>
<td>-</td>
<td>زئوفیل‌های داخلی</td>
<td>۱۵</td>
</tr>
<tr>
<td>-</td>
<td>۲۲</td>
<td>-</td>
<td>مدل‌سازی و بالاگرفتن جلبی‌های مضر</td>
<td>۱۶</td>
</tr>
<tr>
<td>-</td>
<td>۲۲</td>
<td>-</td>
<td>فرانشدهای محیطی</td>
<td>۱۷</td>
</tr>
<tr>
<td>-</td>
<td>۲۲</td>
<td>-</td>
<td>انتخاب‌های تجلی‌بخش دریا</td>
<td>۱۸</td>
</tr>
<tr>
<td>-</td>
<td>۲۲</td>
<td>-</td>
<td>آب‌های رسوب‌دار دریایی</td>
<td>۱۹</td>
</tr>
<tr>
<td>-</td>
<td>۲۲</td>
<td>-</td>
<td>دینامیک زئوفیل‌های شیمیایی الیاف</td>
<td>۲۰</td>
</tr>
<tr>
<td>-</td>
<td>۲۲</td>
<td>-</td>
<td>منابع ویژه</td>
<td>۲۱</td>
</tr>
<tr>
<td>-</td>
<td>۴۲</td>
<td>-</td>
<td>جمع دروس تخصصی انتخابی</td>
<td>۶۷۲</td>
</tr>
</tbody>
</table>

** دانشجو موظف است ۱۸ واحد (۹ درس) از دروس تخصصی انتخابی اخذ نماید.**
فصل سوم
فهرست مطالب دروس گرايش آب و فاضلاب
نام فارسی درس: آزمایشگاه آب و فاضلاب
نام انگلیسی درس: Water and wastewater laboratory
تعداد واحد: ۲ واحد
نوع واحد: ۱ واحد نظری و ۱ واحد عملی
نوع درس: تخصصی انتخابی
پیشنیاز: ندارد
آموزش تکمیلی: آزمایشگاه - سمینار
هدف درس: آشنایی با روش های اندمازه گیری پارامترهای آب و فاضلاب و آلانده ها و دستگاه های مربوط
سرفصل درس: ۲۸ ساعت (۱۶ ساعت نظری و ۲۲ ساعت عملی)
الف) نظری:
ا) اندمازه گیری پارامتر های فیزیکی - شیمیایی (Wet Lab)
قلاییت، اسیدیت، سختی، هدایت، جامدات، pH،
ب) اندمازه گیری مجموع مواد آلی
TSS، VSS، TKN، TP، Oil and grease، TOC، COD، BOD

c) اندمازه گیری فازات
اسکیتروسکی جذب
اسکیتروسکی نشان
اسکیتروسکی مولکول
روش های آماده سازی نمونه

d) اندمازه گیری آئینه ها
اسکیتروسکی مولکول
کرومتوگرافی بیونی
کرومتوگرافی گازی
۵) اندمازه گیری و دریاب های الی (MS، TCD، ECD، FID)
کرومتوگرافی گازی
اسکیتروسکی مولکولی (فلئ کل، دترجنت)
روش های آماده سازی نمونه

۲۰
ب) عملی: انجام آزمایشات زیر

1. اندازه‌گیری پارامترهای فیزیکی-شیمیایی از قبیل قلیانیت، اسیدیت، pH، M همای، M BOD، M TSS، M VSS، M TP، M Oil and grease، M TOC، M COD

2. اندازه‌گیری فلزات توسط دستگاه جذب اتمی

3. اندازه‌گیری اندازه آبیون ها توسط دستگاه کروماتوگرافی یونی و اسپکتروفوتومتر

4. اندازه‌گیری الکتریکی آب توسط کروماتوکراتیفی کاراژ

روش ارزیابی:

<table>
<thead>
<tr>
<th>بروزه</th>
<th>آزمون‌های نهایی</th>
<th>میانه ترم</th>
<th>ارزش‌سنجی مستمر</th>
</tr>
</thead>
<tbody>
<tr>
<td>40 درصد</td>
<td>×</td>
<td>20 درصد</td>
<td></td>
</tr>
</tbody>
</table>

منابع:

1- Environmental Laboratory Fixercises For Instrumental Analysis And Environmental Chemistry, Frank M. Dunnivant, Wiley 2004.

4- Uv-Visible Spectrophotometry Of Water And Wastewater, O. Thomas, Elsevier, 2007

5- Standard Methods for Examination of Water and Wastewater, 20th Edition

6- Extraction Methods for Environmental Analysis John R. Dean, wiley 1998

7- Handbook of Environmental Analysis, Smith, Genium Publishing Corporation, 1993
نام فارسی درس: جمع‌آوری فاضلاب و کنترل روان آب‌های سطحی
Wastewater Collection Network and Runoff Control
نام انگلیسی درس: تعداد واحد: ۲ واحد
نوع واحد: نظری
نوع درس: تخصصی انتخابی
پیشنهاد: ندارد
آموزش تکمیلی: سفر علمی - سه‌ماهه
هدف درس: هدف درس آشنایی دانشجویان با مبانی جمع‌آوری فاضلاب و آب‌های سطحی و طراحی شبکه‌های جمع‌آوری فاضلاب و روان‌های آب‌های سطحی می‌باشد.
сорuç درس: ساعت نظری
بخش اول - جمع‌آوری فاضلاب شهری:
ضرورت طراحی شبکه جمع‌آوری فاضلاب، هیدرولیک فاضلاب‌ها، پر و نیم پر، مبانی طراحی شبکه (تراکم جمعیت، مصرف آب، شبکه، سرعت آب، آب زیرزمینی)، انواع ترتیب شبکه و معاوی شهر، روش انجام محاسبات و طراحی نگهداری بالا آورندگان فاضلاب.
بخش دوم - جمع‌آوری آب‌های سطحی:
کلیاتی در مورد هیدرولوژی و منحنی‌های شدت و مدت بارش، ضرورت طراحی شبکه‌های جمع‌آوری روان آب‌های روشنایی تیمی میزان روان آب‌ها، ساختار رشته، ترتیب شبکه جمع‌آوری و محاسبات مربوطه، هیدرولیک جویب‌ها، آب‌ها، کانال‌ها، تخلیه نهایی روان آب‌ها
روش ارزیابی:
<table>
<thead>
<tr>
<th>پروژه</th>
<th>آزمون‌های نهایی</th>
<th>میان‌تراکم</th>
<th>ارزیابی مستمر</th>
</tr>
</thead>
<tbody>
<tr>
<td>بروزه</td>
<td>آزمون‌های نهایی نوشتنی: ۵۰ درصد</td>
<td>×</td>
<td>۲۰ درصد</td>
</tr>
</tbody>
</table>

منابع:

نام فارسی درس: تصفیه فاضلاب صنعتی
نام انگلیسی درس: Industrial wastewater treatment
تعداد واحد: ۲
نوع واحد: نظری
نوع درس: تخصصی انتخابی
پیشنهاد: ندارد
آموزش تکمیلی: سفر علمی - سیدنار
هدف درس: هدف درس آشنایی دانشجویان با فرآیندهای و سیستم‌های مورد استفاده در تصفیه مواد زائد صنعتی از قبیل فرآیندهای حرارتی، شیمیایی و فیزیکی می‌باشد. همچنین آشنایی با خصوصیات کمی و کیفی فاضلاب صنایع مختلف و کنترل آنها با تاکید بر روشهای نوین.

سرفصل درس: ۲۲ ساعت نظری
1. شناخت کیفیت فاضلاب‌های صنعتی و روش‌های فیزیکی، شیمیایی و بیوشیمیایی تصفیه آنها
2. انتخاب فرآیند تصفیه فاضلاب صنعتی، انتخاب محل تصفیه خانه فاضلاب صنعتی، بکارگیری مدل‌های مختلف در انتخاب فرآیند تصفیه فاضلاب صنعتی
3. استاندارد تخلیه فاضلاب تصفیه شده صنعتی به آب‌های پذیرنده
4. آشنایی با انواع صنایع آلوده کننده محیط زیست (صنایع غذایی، شیمیایی، سلولزی، فلزی و ...
5. بررسی فرآیند تصفیه حاصل ۵ فاضلاب صنعتی از صنایع مختلف
6. عنوان مطالعات مختلف در این زمینه توسط دانشجویان با هدایت و راهنمایی استاد
7. تامین آب مورد نیاز صنایع مختلف، شرایط استفاده مجدد از فاضلاب صنعتی در کاربردهای مختلف، محاسبه کمی و کیفی فاضلاب صنعتی
8. روند ساماندهی فاضلاب صنعتی، شناسایی فرآیند تولید، جداسازی فاضلاب تولیدی، برشی اثرات زیست محیطی فاضلاب صنعتی
9. محاسبه سنی‌ترکیب فرآیند تصفیه فاضلاب با تاکید بر کیفیت و فلزات فاضلاب صنعتی، محاسبه مقدار بیوفیلم در راکتور
10. انتخاب فرآیند تصفیه فاضلاب صنعتی، انتخاب محل تصفیه خانه فاضلاب صنعتی، بکارگیری مدل‌های مختلف در انتخاب فرآیند تصفیه فاضلاب صنعتی
11. انتخاب فرآیندهای مختلف تصفیه فاضلاب صنعتی
Mass Balance
12. صنایع مورد نظر: شهرک‌های صنعتی و نواحی صنعتی- صنایع ماده‌وری، دارویی و...
روش ارزیابی:

<table>
<thead>
<tr>
<th>پروژه</th>
<th>آزمون های نهایی</th>
<th>میان ترم</th>
<th>ارزیابی مستمر</th>
</tr>
</thead>
<tbody>
<tr>
<td>آزمون های نوشتاری: ۲۵ درصد</td>
<td>×</td>
<td></td>
<td>۲۰ درصد</td>
</tr>
</tbody>
</table>

منابع:

3- Wun Jern Ng, Industrial Wastewater Treatment, Imperial College Press, 2006.
نام فارسی درس: ارزیابی ریسک سلامت آلاینده‌های آب
نام انگلیسی درس: Health Risk Assessment of Water Pollutants

تعداد واحد: ۲ واحد
نوع واحد: نظری
نوع درس: تخصصی انتخابی
پیش‌نیاز: تدریس
آموزش تکمیلی: سمینار

هدف درس: آشنایی دانشجویان با آلاینده‌های خطرناک در آب و فاضلاب، اثرات آلاینده‌ها در بدن و اصول اولیه و روش‌های ارزیابی و مدیریت ریسک آلاینده‌های آب و فاضلاب برای انسان‌ها

سرفصل درس: ۲۲ ساعت نظری

۱. آشنایی با آلاینده‌های خطرناک در آب و فاضلاب از قبیل فلزات سنگین، سموم کلره و فسفره، مواد آلی فرار و نیمه فرار، ترکیبات نفتی، رادیواکتیو و غیره.
۲. آشنایی با سیستم‌های مختلف بدن.
۳. راه‌های ورود آلاینده‌ها به بدن و فاضلاب به بدن.
۴. تمیین نوع ترکیب اجزاء بدن توسط آلاینده‌های آب و فاضلاب.
۵. اثرات بیولوژیکی آلاینده‌های خطرناک آب و فاضلاب در انسان‌ها (از قبیل اثرات بر سیستم گوارشی، سیستم دفاعی، موتاژن‌ها، سرطان‌های و غیره در بدن انسان).
۶. مقداری از به تعریف ریسک و ارزیابی ریسک
۷. شناسایی خطر، جمع‌آوری اطلاعات، سنجش و ارزیابی شواهد در آلاینده‌های آب و فاضلاب.
۸. تعبیه رابطه مقدار نماس با واکنش ایجاد شده در انسان‌ها برای آلاینده‌های آب و فاضلاب.
۹. تعبیه مقدار نماس انسان‌ها با آلاینده‌های آب و فاضلاب در شرایط مختلف و انسان‌های مختلف.
۱۰. ارزیابی ریسک برای آلاینده‌های خاص در آب و فاضلاب و تعبیه ریسک‌های اثرات سرطانی و غیر سرطانی.
۱۱. مدیریت ریسک تخمینی و نگهداری گیری از تکنولوژی‌های موجود برای کاهش اثرات تخریبی ریسک
<table>
<thead>
<tr>
<th>ترکیب</th>
<th>آزمون‌های نهایی</th>
<th>میان‌ترم</th>
<th>ارزش‌پذیری مستمر</th>
</tr>
</thead>
<tbody>
<tr>
<td>درصد</td>
<td>40 درصد</td>
<td>×</td>
<td>20 درصد</td>
</tr>
</tbody>
</table>

منابع:

نام فارسی درس: تصفیه نوین فاضلاب
نام انگلیسی درس: Advanced Wastewater Treatment
تعداد واحد: ۲ واحد
نوع واحد: نظری
نوع درس: تخصصی انتخابی
پیشنهاد نداده شد
آموزش تکمیلی: سفر علمی - سیمینار
هدف درس: آشنایی دانشجویان با نوین تصفیه فاضلاب

سرفصل درس: ۲۲ ساعت نظری
۱. مقدمه: مشخصات کمی و کیفی فاضلاب، ضرورت به تصفیه پیشرفته، بررسی مقدماتی روشهای مختلف تصفیه فاضلاب، مزیت و معایب تصفیه متقارن و تکنیک پیشرفته، انتخاب فرآیند تصفیه
۲. تصفیه نوین: استفاده از اولتراسونیک در تصفیه فاضلاب، باکتریا تکنولوژی نانو در تصفیه فاضلاب، بررسی انرژی زمین گرمایش فاشرته، استفاده از انرژی خورشیدی در تصفیه فاضلاب، باکتریا فراوند بیشتر
۳. ارزیابی پیشرفته با تأکید بر افزایش انرژی، روشهای نوین کندردایی، انرژی خورشیدی، اورژنی UV، نانو، اولتراسونیک و...
۴. آشنایی با روشهای مختلف ساماندهی لجن و روشهای پیشرفته جهت ایگری لجن و...
۵. استانداردهای ملی و بین المللی تخلیه فاضلاب به ابها پذیرنده

روش ارزیابی:

<table>
<thead>
<tr>
<th></th>
<th>برخورد</th>
<th>ارزیابی پیشرفته</th>
<th>میان ترم</th>
<th>ارزیابی مستمر</th>
</tr>
</thead>
<tbody>
<tr>
<td>۲۵</td>
<td>ارزش های نوشتاری: ۵۵ درصد</td>
<td>×</td>
<td>۲۰</td>
<td></td>
</tr>
</tbody>
</table>

منابع:
۱- نامر بهزادی، غلامرضا نیپی‌پسندی، علی زاهدی، علی‌رضا محمودی‌اقدم، آزاده آقاجانی‌پاسینی، کاربرد سیستم انتشار امواج اولتراسونیک در تصفیه فاضلاب، انتشارات دانشگاه تهران، ۱۳۹۱.

نام فارسی درس: تصفیه آب صنعتی

Industrial Water Treatment

نام انگلیسی درس: 2
تعداد واحد: 2
نوع واحد: نظری
نوع درس: تخصصی انتخابی
پیشیازی: ندارد
آموزش تکمیلی: سفر علمی، سمینار
هدف درس: آشنایی دانشجویان با فراخوان آب صنعتی و استفاده مجدد آب در صنعت
سرفصل درس: 22 ساعت نظری

1- تصویب داخلی و خارجی Cadix
2- موروری بر فراخوان تصفیه خارجی (فیلتراسیون، زغال فعال، تبادلی یونی و آسانی با نرم افزار های و غیره)
3- بررسی پیش تصویبی، پس تصویبی و فراخوانی غشایی (طراحی و محاسبه الترافیلتراسیون، RO و آسانی با نرم افزارهای دیگر)
4- کنترل رسوب، خوردگی، رشد بیولوژیکی آب خنک کنتنده ها
5- کنترل خوردگی و رسوب آب بولرها
6- تصویب آب کناتا
7- استفاده مجدد آب در صنعت

روش ارزیابی:

<table>
<thead>
<tr>
<th>پروژه</th>
<th>آزمون های نهایی</th>
<th>میان ترم</th>
<th>ارزیابی مستمر</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 درصد</td>
<td>آزمون های نوشتاری: 25 درصد</td>
<td>15 درصد</td>
<td></td>
</tr>
</tbody>
</table>

منابع:

- "BETZ Handbook of Industrial Water Conditioning" by Betz Laboratories, Published by Betz Laboratories (1991)
نام فارسی درس: موارد ویژه در تصفیه آب
Special Subjects in Water Treatment

تعداد واحد: 2
نوع واحد: نظری
نوع درس: نظری-خواندنی

هدف درس: درس به موضوعاتی می پردازد که در فهرست عناوین دروس تصفیه آب، تصفیه آب‌های صنعتی و طراحی تصفیه خانه آب به انها اشاره نشده است.

سرفصل درس: 23 ساعت نظری

1- بررسی استانداردهای آب آشامیدنی با تغییرات استاندارد 1353 کشور و استاندارد 1011
2- خصوصیات موارد آلی طبیعی آب (NOM)
3- روش‌های حذف موارد آلی طبیعی (NOM)
4- خصوصیات موارد آلی مصنوعی و میکرو آلاینده‌ها (SOC)
5- روش‌های حذف میکرو آلاینده‌ها
6- روش‌های حذف جلبک از آب
7- بررسی و مقایسه زلال ساره در تصفیه آب
8- بررسی مدیریت لجن در تصفیه آب
9- تست ویرود آب و راهکار حذف آن
10- بررسی حذف مواد معدنی در آب
11- حذف نیترات از آب به روش بیولوژیکی

روش ارزیابی:

<table>
<thead>
<tr>
<th>پروژه</th>
<th>آزمون های نهایی</th>
<th>میان‌ترم</th>
<th>ارزیابی‌های متصل</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>آزمون های نوشتاری</td>
<td>30 درصد</td>
<td>10 درصد</td>
</tr>
<tr>
<td>60 درصد</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
نام فارسی درس: فرآیندهای زیستی در تصفیه فاضلاب

Biological Processes in Wastewater Treatment:

تعداد واحد: ۲

نوع واحد: نظری

نوع درس: تخصصی انتخابی

پیشنهاد: ندارد

آموزش تکمیلی: سفر علمی، سمینار

هدف درس: آشنایی جامع دانشجویان با فرآیندهای زیستی مطرح در تصفیه فاضلاب

سرفصل درس: ۲۳ ساعت نظری

۱- واکنشها و راکتورها

۲- ثابت های بیولوژیکی و روش تعیین آنها

۳- فرآیندهای بیولوژیکی رشد ثابت (صلاحیج، دیسک‌های خرگان و نیازها)

۴- فرآیندهای بیولوژیکی رسید مطلق (برکه تهیت، لاغری موادهای لجس فعال متغیر، فرآیندهای حذف بیولوژیکی نیتروژن)

۵- فرآیندهای حذف بیولوژیکی رنگ، فرآیندهای پیشرفته لجس فعال MBBR, AGAR, SBRC

۶- فرآیندهای به‌هم‌وای (UASB)

۷- فیلترهای به مواری، راکتور پی به‌هم‌وای بسته لجن و جریان روبه‌رو ایالا (RAKTOOHAY بانفشار بی‌بازاری (ABR), راکتورهای ناپیوسته، متمایل به‌هم‌وای PFD

۸- تهیه نقشه

روش ارزیابی:

<table>
<thead>
<tr>
<th>بروزه</th>
<th>آزمون‌های نهایی</th>
<th>میان نرم</th>
<th>ارزیابی مستمر</th>
</tr>
</thead>
<tbody>
<tr>
<td>۴۰ درصد</td>
<td>آزمون‌های نوشته‌ای: ۵۰ درصد</td>
<td>۵۰ درصد</td>
<td>۱۰ درصد</td>
</tr>
</tbody>
</table>

۳۳

هام فارسی درس: راهبردی تصفیه‌خانه‌های آب و فاضلاب

Water and Wastewater Treatment Plant Operations

تعداد واحد: ۲ واحد

نوع واحد: نظری

نوع درس: تخصصی انتخابی

پیشنهاد ندارد

آموزش تکمیلی: سفر علمی

هدف درس: در این درس دانشجویان با نحوه راهبردی و دستورالعمل‌های بهره‌برداری فراهم‌آوردن تصفیه‌خانه آب و فاضلاب آشنا خواهند شد.

سرفصل درس: ۲۲ ساعت نظری

۱. آشنایی با سیستم‌های تصفیه آب و فاضلاب
۲. دستورالعمل بهره‌برداری از سیستم‌های لجن فعال در حالت عادی و عیب یابی
۳. دستورالعمل بهره‌برداری از لگون‌های هواده در حالت عادی و عیب یابی
۴. دستورالعمل بهره‌برداری از بکر که تکیه در حالت عادی و عیب یابی
۵. دستورالعمل بهره‌برداری از بکر‌های صافی‌های کچیده در حالت عادی و عیب یابی
۶. دستورالعمل بهره‌برداری از سیستم متدال آب
۷. دستورالعمل بهره‌برداری از سیستم پیشرفته آب

روش ارزیابی:

<table>
<thead>
<tr>
<th>بروزه</th>
<th>آزمون های نهایی</th>
<th>میان ترم</th>
<th>ارزش‌بندی مستمر</th>
</tr>
</thead>
<tbody>
<tr>
<td>۵۰ درصد</td>
<td>آزمون های نوشتاری: ۲۵ درصد</td>
<td>×</td>
<td>۲۵ درصد</td>
</tr>
</tbody>
</table>

منابع:

نام فارسی درس: آلاینده‌های آبی پایدار
نام انگلیسی درس: Persiant Organic Pollutants
تعداد واحد: ۲ واحد
نوع واحد: نظری
نوع درس: تخصصی انتخابی
پیشنهاد: ندارد
آموزش تکمیلی: سفر علمی
هدف درس: هدف درس آشنایی دانشجویان با مبانی ترکیبات آبی و اصول خواص شیمیایی آنها در محیط های آبی می‌باشد.

سرفصل درس: ۲۲ ساعت نظری
۱- ترکیبات آبی فلزی در محیط زیست (هدف: سبیل‌های جمع‌آوری، انتقال در محیط‌های مختلف)
۲- مواد رادیواکتیو در محیط زیست (اسکلت، ماده اشاره، تولید رادیواکتیو مصنوعی)
۳- طرح طبقه‌بندی بنیان‌گذاری ترکیبات آبی پایدار (استکبری، شبکه‌های بین‌المللی حذف POPS)
۴- کاهش و حذف سموم آبی پایدار
۵- آنالیز آلاینده‌های پایدار در کشورهای در حال توسعه
۶- اکسسپلیکیوشن و فوران‌ها (راه‌شناسی در محیط، اصلاح‌پذیری استانداردهای بین‌المللی)
۷- ترکیبات، خواص شیمیایی؛ انتقال طولانی مدت ترکیبات پایدار

روش ارزیابی:

<table>
<thead>
<tr>
<th>پروژه</th>
<th>آزمون های نهایی</th>
<th>میان ترم</th>
<th>ارزیابی مستمر</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>۵۰ درصد</td>
<td>×</td>
<td>۲۵ درصد</td>
</tr>
</tbody>
</table>

منابع:

۲- Standardize toolkit of pops: unep chemicals, UNEP Chemicals is part of UNEP's Technology, Industry and Economics Division UNEP CHEMICALS, 2005.
نام فارسی درس: طراحی شبکه توزیع آب شهری
نام انگلیسی درس: Urban Water Distribution Network Design

تعداد واحد: ۲ واحد
نوع واحد: نظری
نوع درس: تخصصی انتخابی
پیشنهاد ندارد
آموزش تکمیلی: سفر علیه

هدف درس: هدف درس آشنایی دانشجویان با مبانی سیستم‌های انتقال و توزیع آب و طراحی شبکه‌های انتقال و توزیع آب می‌باشد.

سرفصل درس: ۳۲ ساعت نظری
بخش اول - انتقال آب:
توجهات کلی در انتخاب مسیر، توجهات کلی در هیدرولیک انتقال، انتقال نغلی، انتقال پمپ، ترکیب دو روش، کنترل فشار و کلاس لوله و خوردوگی، توجهات اقتصادی در طراحی، توجهات در نصب و آزمایش لوله، بارها و فشارها وارد به لوله

بخش دوم - توزیع آب:
توجهات کلی در استفاده از نطفه شهر، مبانی تریب شیبکه و طراحی - ضرایب تغییرات، تیازمندی‌های فضای سبز و مصرف دیگر، انواع شبکه توزیع در رابطه با توییوگرفی شهر، نفلی - پمپاژ - ترکیب - پوشش‌های محاسبه هیدرولیکی - دستی - کامپیوتری، اجرای لوله گذاری - بارها - فشارها - گندزدایی، مخارن ذخیره و سرویس

روش ارزیابی:

<table>
<thead>
<tr>
<th>پرورش</th>
<th>آزمون‌های نهایی</th>
<th>میان‌TERM</th>
<th>ارزیابی مستمر</th>
</tr>
</thead>
<tbody>
<tr>
<td>۵۰</td>
<td></td>
<td></td>
<td>۲۵</td>
</tr>
</tbody>
</table>

۳۷

نام فارسی درس: آزمایشگاه عملیات واحد در تصفیه آب و فاضلاب
Unit Operations Laboratory of Water and Wastewater Treatment

تعداد واحد: ۲ واحد
 نوع واحد: ۱ نظری و ۱ عملی
 نوع درس: تخصصی-اتخیابی
 پیشنهاد: ندارد
 آموزش تکمیلی: ندارد
 هدف درس: آشنا شدن عملی دانشجویان با فرآیندهای مختلف تصفیه آب و فاضلاب

سرفصل درس: ۱۶ ساعت نظری و ۲۲ ساعت عملی

الف) نظری:
۱. مورزی بر کلیه روش های سربوط به آنالیز های زیست محیطی از قبیل: تیمین جامدات (COD), Solid.
 ۲. مورزی بر توری فرآیندهای تصفیه آب و فاضلاب از قبیل: نشینی، فیتراسیون، جذب کربنی، گندزدانی
 هواهده. لجن فعال، انمکاد و لخته سازی

(بر) عملی:
GC/MS, GC/FID, GC, TCD, HPLC, A.A, ICP, IC, Spectrophotometer

۱. آشناشدن با دستگاه های پیشرفته اندازه گیری آلاینده های زیست محیطی از قبیل: GC, TCD, HPLC, A.A, ICP, IC, Spectrophotometer
 ۲. آشناشدن بر روی عملی مربوط به فرآیندهای تصفیه آب و فاضلاب از قبیل: نشینی، فیتراسیون، جذب کربنی، گندزدانی، هواهده، لجن فعال، انمکاد و لخته سازی

روش ارزیابی:

<table>
<thead>
<tr>
<th>بررخه</th>
<th>آزمون های نهایی</th>
<th>میان ترم</th>
<th>ارزیابی مستمر</th>
</tr>
</thead>
<tbody>
<tr>
<td>ممکن</td>
<td>۴۰ درصد</td>
<td>۲۰ درصد</td>
<td>۱۰ درصد</td>
</tr>
</tbody>
</table>

منابع:
1- Standard Methods For the Examination of Water and Wastewater, APHA
2- EPA's Sampling and analysis methods, L.H. Keith, 2000
نام فارسی درس: بازیابی و استفاده دوباره آب

نام انگلیسی درس: Water reclamation and Reuse

تعداد واحد: ۲

نوع واحد: ۲ واحد نظری

نوع درس: تخصصی انتخابی

پیشنهاد: ندارد

آموزش تکمیلی: سفر علمی - سمینار

هدف درس: در این درس دانشجویان با مباحث تولید فاضلاب‌های قابل بازیافت و استفاده مجدد آنها جهت مصرف جویاری و با نظر مصرف جویاری، اجتماعی و قانونی آشنا خواهند شد.

سرفصل درس: ۲۲ ساعت نظری

۱. مقدمه و اهمیت موضوع

۲. موضوعات گسترش و فعالیت استفاده دوباره آب در ایران و جهان

۳. معرفی و بررسی فاضلاب شهری و اثرات زیست محیطی و بهداشتی آنها

۴. اثرات بهداشتی و زیست محیطی استفاده دوباره آب

۵. قوانین و رهنمودهای استفاده دوباره آب

۶. تکنیک‌های تصفیه برای بازیافت آب جهت مصرف گوناگون (کشاورزی، صنعتی، تغذیه آب‌های زیرزمینی و غیره)

۷. کاربردهای استفاده دوباره آب

۸. برنامه‌ریزی و اجرای سیستم‌های بازیابی و استفاده دوباره آب

روش ارزیابی:

<table>
<thead>
<tr>
<th>پروژه</th>
<th>آزمون‌های نهایی</th>
<th>میان‌TERM</th>
<th>ارزیابی مستمر</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۵ دارد</td>
<td>نوشتار: ۴۰ دارد</td>
<td>۳۰ دارد</td>
<td>۱۵ دارد</td>
</tr>
</tbody>
</table>
نام فارسی درس: تصفیه تکمیلی فاضلاب
Supplementary Treatment of Wastewater

تعداد واحد: 2

نوع واحد: نظری

نوع درس: تخصصی انتخابی

پیشنهاد: ندارد

آموزش تکمیلی: سفر علمی-سیمینار

هدف درس: در این درس دانشجویان با فرآیندهای تصفیه تکمیلی فاضلاب به طور کلی و با فرآیندهای مختلف حذف نیترژن و فسفر از فاضلاب به طور جزیی آشنا خواهند شد.

سرفصل درس: 22 ساعت نظری

1- اهداف تصفیه تکمیلی فاضلاب، طیقه‌بندی اجزاء باقیمانده در پساب تصفیه شده و فرآیندهای تصفیه تکمیلی فاضلاب به تفکیک اجزاء باقیمانده در پساب

2- حذف نیترژن از فاضلاب (آمونیاک، اسید، دی‌ام‌تی، دی‌تی‌ام‌تی)

3- فرآیندهای نوین حذف نیترژن از فاضلاب (آنامونکس، نانوکاتیون و ...

4- حذف بیولوژیکی فسفر مازاد

5- حذف شیمیایی فسفر مازاد

روش ارزیابی:

<table>
<thead>
<tr>
<th>پروژه</th>
<th>آزمون نهایی</th>
<th>میان ترم</th>
<th>ارزیابی مسکن</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 درصد</td>
<td>نوشتاری 40 درصد</td>
<td>20 درصد</td>
<td>15 درصد</td>
</tr>
</tbody>
</table>

منابع:

نام فارسی درس: طراحی بیوراکتورها

Bioreactors Design

نام انگلیسی درس: 2

تعداد واحد: 2

نوع واحد: 2 واحد نظری

نوع درس: تخصصی انتخابی

پیشنیاز: ندارد

آموزش تکمیلی: سفر علمی-سیمینار

هدف درس: در این درس دانشجویان با اصول و مبانی طراحی بیوراکتورها بیوشیمایی و کاربرد آنها در تصفیه آب و فاضلاب آشنا خواهند شد.

سرفصل درس: ۲۲ ساعت نظری

1. اصول فرایندهای بیوشیمایی

آکلوکزی، استوکومتری، سینتیک و انرژی فرایندهای بیوشیمایی

2. مدلسازی کلی راکتورهای ایده آل

- راکتورهای غیر مداوم
- راکتورهای مداوم با اختلاط کامل
- راکتورهای مداوم با جریان نهیر گونه
- راکتورهای با جریان بی‌گشتی

تعیین معادلات سرعت واکنش بر اساس اطلاعات آزمایشگاهی

3. مدلسازی راکتورهای رشد چسبیده ایده آل

- پیوستگی فرایندهای رشد چسبیده
- صافی چکنده
- تماس دهنده های بیولوژیکی چرخان
- برجهای آکنده
- راکتورهای بیوفیلمی بستر متحرک
- فیلترهای بیولوژیکی
- راکتورهای بیوفیلمی غشایی

UASB
روش ارزیابی:

<table>
<thead>
<tr>
<th>پروژه</th>
<th>تجزیه‌های نهایی</th>
<th>مینی‌ترم</th>
<th>ارزیابی مستمر</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>۱۵ دویصد</td>
<td>۳۰ دویصد</td>
<td>۱۵ دویصد</td>
</tr>
</tbody>
</table>

منابع:
نام فارسی درس: فناوری نانو در تصفیه آب و فاضلاب
Nanotechnology in Water and Wastewater Treatment

تعداد واحد: ۲ واحد
نوع واحد: نظری
نوع درس: تخصصی انتخابی
پیشنهادی: ندارد
آموزش تکمیلی: ندارد
هدف درس: آشنایی با مبانی فناوری نانو و کاربرد آن در تصفیه آب و فاضلاب

سرفصل درس: ۲۲ ساعت نظری
بخش اول: مبانی فناوری نانو
۱- مقدمه ای بر فناوری نانو
 ۱-۱ تعریف نانو
 ۱-۲ اهمیت نانو
۲- پیشینه فناوری نانو
 ۲-۱ معرفی انواع ساختار های نانو
 ۲-۲ خواص نانو درات
 ۲-۲-۱ خواص فیزیکی
 ۲-۲-۲ خواص شیمیایی
 ۲-۲-۳ خواص مکانیکی
۳- روشهای سنتز نانو ذرات
 ۳-۱ سل زل
 ۳-۱-۱ میکرومولسیون
 ۳-۱-۲ روش روش بندهای
 ۳-۲ روشهای هیدرو ترمال
 ۳-۲-۱ روشهای سوو لشیمیایی
 ۳-۲-۲ روشهای سنتز آنورسول
۴- روشهای و دستگاه های بررسی ساختار های نانو
بخش دوم: کاربرد فناوری نانو در تصفیه آب و فاضلاب

1- اهمیت فناوری نانو در تصفیه آب و فاضلاب
2- معرفی مکانیسم های جذب و تخرب آلانیده ها
3- روش های عملیاتی استفاده از نانو ذرات
4- حذف آلاینده ها به اساس مکانیسم تخرب شیمیایی
5- فتوکتالیستها با پایه اکسیده های فلزی و اکسیده های فلزی مختلط
6- خنثی سفت

5- حذف آلاینده ها به اساس مکانیسم جذب

5-1 نانو ذرات با پایه اکسید های فلزی
5-2 نانو ذرات پلیمری
5-3 نانو ذرات با پایه کربنی (نانو لوله کربنی - گرافن اکسید)
5-4 مواد نانو حفره ای معدنی
5-5 مواد نانو حفره ای با پایه کربنی

6- حذف آلاینده ها به اساس مکانیسم نانوفیلتراسیون

6-1 غشا های نانو ساختار حاوی نانو ذرات عامل دار شده
6-2 غشا های نانو لوله ای
6-3 غشا های نانو ساختار حاوی دندان یک
6-4 نانو فیلتراسیون برای تصفیه آب اصلاح شده
6-5 نانو فیلتراسیون برای تصفیه فاضلاب
6-6 نانو فیلتراسیون برای نمک زدایی از آب دریا
بخش سوم: سمیت و خطرات زیست محیطی نانوذرات

- انتقال نانوذرات به محیط های آبی
- نانوذرات به عنوان آلاینده های در حال ظهور
- خطرات زیست محیطی نانوذرات

روش ارزیابی:

<table>
<thead>
<tr>
<th>پروژه</th>
<th>ارزش‌گذاری نهایی</th>
<th>میان ترم</th>
<th>ارزش‌گذاری مستمر</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 درصد</td>
<td>آزمون های نوشتاری: 60 درصد</td>
<td>0 درصد</td>
<td>10 درصد</td>
</tr>
<tr>
<td></td>
<td>عملکرد: 0 درصد</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

منابع:

2. Nanotechnologies for Water Environment Applications, Edited by Tian C. Zhang; Rao Y. Surampalli; Keith C. K. Lai; Zhiqiang Hu; R. D. Tyagi; Irene M. C. Lo, 2009, American Society of Civil Engineers

نام فارسی درس: فرآیندهای چسبی در تصفیه آب و فاضلاب
Adsorptive processes in Water and Wastewater Treatment

تعداد واحد: ۲ واحد
نوع واحد: نظری
نوع درس: تخصصی انتخابی
پیشنهاد: ندارد

آموزش تکمیلی: ندارد

هدف درس: آشنایی با فرآیندهای چسب و انواع چسب‌هایی که در جذب فلزات سنگین و آلی‌نهاده‌ای آلی از آب و فاضلاب

سرفصل درس: ۲۲ ساعت نظری
بخش اول: مبانی چسب سطحی
۱- مقدمه ای بر فرآیند چسب سطحی
۲- تاریخچه
۲-۱ بودجه چسب سطحی
۲-۲ تغییرات جاذب‌ها در فرآیند تصفیه
۲-۳ کاربرد‌های مواد چسب

بخش دوم: اصول چسب سطحی
۲-۱ اصول چسب سطحی
۲-۱-۱ تعریف چسب سطحی
۲-۱-۲ فاکتور های موثر در چسب
۲-۲ شیمی چسب و نیروهای دیگر در چسب سطحی
۲-۳ خواص فیزیکی و شیمیایی چسب‌ها
۲-۳-۱ سطح چسب
۲-۳-۲ تکلخل
۲-۳-۳ ظرفیت
۲-۳-۴ گروه‌های عامی سطحی
۲-۴ بیانیه تناژ
۲-۵ ساختار پلوری

50
روش‌ها و دستگاه‌های بررسی جاذب‌ها

- ۴-۱ تصویر برداری و تعیین مورفولوژی
- ۴-۲ تعیین اندام‌های ذرات
- ۴-۳ اندام‌های گیره سطح ویژه و اندام‌های حفرات جاذب
- ۴-۴ اندام‌های گیره بتنسیل زن
- ۴-۵ شناسایی گروه‌های عملی سطحی جاذب‌ها
- ۴-۶ تعیین جنس جاذب‌ها
- ۴-۷ تعیین ساختار جاذب‌ها

- ۵-۱ ایزوتروم های جذب
- ۵-۲ ایزوتروم فرولینج
- ۵-۳ ایزوتروم لاگومور
- ۵-۴ ایزوتروم تمکین

- ۶-۱ سینتیک و مکانسیم جذب
- ۶-۲ سینتیک شیب درجه یک
- ۶-۳ سینتیک شیب درجه دو
- ۶-۴ سینتیک رویج

- ۶-۵ سینتیک تفویض درون دانه ای

استفاده از جاذب‌ها در سیستم پیوسته (ستونی)

بخش دوم: معرفی انواع جاذب‌ها و کاربرد آنها در تصفیه آب و فاضلاب

- ۱ جاذب‌های با پایه کریستالی
- ۲ جاذب‌های معدنی طبیعی
- ۳ جاذب‌های معدنی سنگی
- ۴ جاذب‌های های متخلخل با حفرات نانو
- ۵ جاذب‌های پلیمر
- ۶ جاذب‌های زیستی
- ۷ جاذب‌های نانو
- ۸ جاذب‌های بر پایه پسماند های کشاورزی
- ۹ جاذب‌های بر پایه پسماند های صنعتی

۵۱
بخش سوم: طراحی جاذب‌ها برای حذف آلاینده‌های آب و فاضلاب

1- طراحی جاذب برای حذف قلزات سنگین
2- طراحی جاذب برای حذف آلاینده‌های آلی
3- طراحی جاذب برای حذف رنگ
4- طراحی جاذب های با تخخل زید

بخش چهارم: طراحی فرآیند های مبتنی بر جاذب
بخش پنجم: بازیافت جاذب ها

روش ارزیابی:

<table>
<thead>
<tr>
<th>بروزه</th>
<th>آزمون های نهایی</th>
<th>میان ترم</th>
<th>ارزیابی مستمر</th>
</tr>
</thead>
<tbody>
<tr>
<td>۳۰ درصد</td>
<td>آزمون های نوشتاری: ۷۰ درصد</td>
<td>۰ درصد</td>
<td>۱۰ درصد</td>
</tr>
<tr>
<td></td>
<td>عملکردی: ۳ درصد</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

منابع:

1- Adsorption Technology in Water Treatment, Eckhard Worch, de Gruyter, 2012
4- Chemistry of Nanocarbons, Takeshi Akasaka, Wiley, 2010
6- Biopolymers: Biomédical and Environmental Applications, Susheel Kalia, Wiley 2011
7- Advances in Nanoporous Materials, Stefan Ernst, Elsevier 2009
8- Heavy Metals in the Environment, H.B. Bradl, Elsevier 2005
10- Activated Carbon for Water and Wastewater Treatment, Integration of Adsorption and Biological Treatment, wiley 2012
12. Recent Advances in Adsorption Processes for Environmental Protection and Security, José Paulo Mota, Springer 2006
نام فارسی درس: تصفیه شیمیایی پیشرفته آب و فاضلاب

Advanced Chemical Treatment of Water and Wastewater

تعداد واحد: ۲ واحد
نوع واحد: نظری
نوع درس: تخصصی انتخابی
پیش‌نیاز: ندارد
آموزش تکمیلی: ندارد
هدف درس: آشنایی با فرآیندهای شیمیایی پیشرفته در حذف آلاینده‌ها از آب و فاضلاب

سرفصل درس: ۲۷ ساعت نظری
بخش اول: مبانی فرآیندهای پیشرفته شیمیایی در تصفیه آب و فاضلاب

1. ضرورت فرآیندهای پیشرفته شیمیایی در تصفیه آب و فاضلاب
2. میکرو آلاینده‌ها و آلاینده‌های نو ظهور
3. اکسیداسیون شیمیایی
4. احیا شیمیایی
5. مکانیسم‌های حذف آلاینده‌های آلی و فلزات سنگین توسط فرآیندهای شیمیایی
6. سنتز و ترمودینامیک واکنش‌های شیمیایی
7. کاتالیزورهای فرآیندهای شیمیایی
8. فرآیندهای پیشرفته اکسیشیون و احیا
9. فرآیندهای فاز همگن و ناهمگن

بخش دوم: معرفی فرآیندهای شیمیایی پیشرفته:

1. فرآیندهای مبتنی بر رادیکال‌های آزاد: رادیکال هیدروکسیل و سولفات
2. فرآیندهای مبتنی بر تابش نور: فتوولیزر و فتوکاتالیست
3. پیشرفته‌ها در زمینه حذف آلاینده‌ها با استفاده از نور خورشید
4. فرآیندهای اکسیشیون به کمک مواد شیمیایی
5. فرآیندهای مبتنی بر امواج فراصوت
6. فرآیندهای مبتنی بر مواد نانو
7. فرآیندهای الکتروشیمیایی
بخش سوم- معرفی تکنیک‌های اندوزه‌گیری آلاینده‌های نو ظهور و محصولات جانبی فرآیندهای شیمیایی

روش ارزیابی:

<table>
<thead>
<tr>
<th>پروره</th>
<th>آزمون‌های نهایی</th>
<th>میان نرم</th>
<th>ارزیابی مستمر</th>
</tr>
</thead>
<tbody>
<tr>
<td>۲۰ درصد</td>
<td>آزمون‌های نوشتاری: ۶۰ درصد</td>
<td>۰ درصد</td>
<td>۱۰ درصد</td>
</tr>
<tr>
<td></td>
<td>عملکرد: ۰ درصد</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

منابع:

نام فارسی درس: بیوتکنولوژی در تصفیه آب و فاضلاب

نام انگلیسی درس: Biotechnology in Water and Wastewater Treatment

تعداد واحد: ۲ واحد

نوع واحد: نظری

نوع درس: تخصصی انتخابی

پیش‌نیاز: ندارد

آموزش تکمیلی: سفر علمی - سمینار

هدف درس: در این درس دانشجویان با کاربرد میکروبیولوژی زیست محیطی در تصفیه فاضلاب‌های شهری و صنعتی و تصفیه آب آشنا خواهند شد.

سرفصل درس: ۲۳ ساعت نظری

۱- مقدمه ای بر بیو تکنولوژی زیست محیطی
۲- استفاده از سلولهای زیستی در تصفیه آب و فاضلاب باکتری‌ها
۳- جلبک‌ها
۴- فارچ‌ها
۵- پروتوزوها

سلولهای گیاهی و ...

۶- استفاده از سلولهای زیستی در تصفیه آب و فاضلاب
۷- تکنولوژی زن در بیو تکنولوژی آب و فاضلاب
۸- ترکیب زیستی آلاینده‌های خطرناک
۹- استفاده از بیو تکنولوژی در تصفیه آب

روش ارزیابی:

<table>
<thead>
<tr>
<th>پروژه</th>
<th>آزمون های نهایی</th>
<th>میان ترم</th>
<th>ارزیابی مستمر</th>
</tr>
</thead>
<tbody>
<tr>
<td>۲۵</td>
<td>۱۰</td>
<td>۳۵</td>
<td></td>
</tr>
</tbody>
</table>
1- Introduction to Environmental Biotechnology, Murray Levi et al., 2000
2- Environmental Biotechnology: Principles and Application, Bruce Rittmann and Perry McCarty, 2001
3- Biology of Microorganisms, Brock, Thomas D., 2006, 9th edition
4- Handbook of Environmental Biotechnology, Bhatia, SC., 2008 Vol-1, 2
5- Biotechnology for Waste and Wastewater Treatment, Cheremisinoff, Nicholas P., William Andrew Inc., 1997
فصل چهارم
فهرست مطالب دروس گرايش
منابع آب
نام فارسی درس: تغییر اقلیم و منابع آب
Climate change and Water Resources
نام انگلیسی درس:
تعداد واحد: ۲
نوع واحد: ۲ واحد نظری
نوع درس: تخصصی انتخابی
پیشنهاد: ندارد
آموزش تکمیلی: ندارد

هدف درس: آشنایی دانشجویان با اثرات بالقوه تغییر اقلیم بر روی هیدرولوژی و منابع آب کشور با تأکید بر جریانهای آبی از سطح مقایسه‌ی سناریوی دنیا به سال سازگاری (Downscaled) هیدرولوژیکی و منابع آب که از طریق شبیه‌سازی اقلیم کوچک مقياس شده است، بر اثر دسته‌بندی شده. همچنین برخی از عدم قطعیت‌های مرتبط با تغییرات اقلیم و مدیریت منابع آب تأکید خواهد شد. در تیم تغییرات اقلیم بر منابع آب اقدامات درجه‌ی سازگاری انجامه و حفظ آب استفاده زا‌زار برای تخصصی آب و به خدمات گرفتن اقدامات مناسب مدیریتی مورد بحث قرار خواهند گرفت.

سرفصل درس: ۳۲ ساعت نظری

• مقام‌های و آگاهی نسبت به تکانگه درک اقلیم‌های بارانی، تغییرات دمای زمین، گازهای گلخانه‌ای، تغییرات اقیم، بارش باران و برف
• بررسی فرآیند های بارش در سیستم‌های اقلیمی
• مطالعه تغییرات طبیعی و تغییرات اقلیمی
• اثرات اقلیم بر تغییرات و تأمین آب
• اثرات تغییرات اقلیم بر کیفیت آب و ریسک‌های مربوطه
• تغییرات اقلیمی مشاهده شده و اثرات آنها بر منابع آب (تغییر دما و آب)
• الزامات تغییرات اقلیم بر منابع آب سطحی و زیرزمینی در ایران
• برنامه‌های ناشی از تغییرات اقلیم
• رقابت بین آب و گاز (با توجه به افزایش جمعیت و توقف شهروندی و فعالیت‌های کشاورزی وصنعتی و...)
• بررسی مدلهای پیش‌بینی اقلیم با دنیاگردکشی فرضیات لازم و عدم قطعیت‌های مربوطه
• اثرات منطقه‌ای اقلیمی ازجمله تغییرات در الگوی بارش و حذف بسته‌ای در دریاچه و اثرات احتمالی اکولوژیکی
• تغییرات پیش‌بینی شده
تفاوت‌های انرژی و گاز‌های خطرناک با تغییرات اقلیم
مدیریت یکپارچه منابع آب در سازگاری با تغییرات اقلیم
ظرفیت ساز و برنامه‌ریزی برای مدیریت یکپارچه منابع آب و سازگاری با تغییرات اقلیم در جهت توسعه پایدار
چارچوب‌های قانونی برای اجرای مدیریت یکپارچه منابع آب

روش ارزیابی:

<table>
<thead>
<tr>
<th>پروژه</th>
<th>آزمون های نهایی</th>
<th>میان ترم</th>
<th>ارزیابی مستمر</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰۰ درصد</td>
<td>آزمون های نوشتاری: ۰۰ درصد</td>
<td>۳۰ درصد</td>
<td>۱۰ درصد</td>
</tr>
<tr>
<td>عملکردی: ۰۰ درصد</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

منابع:
1. بردانی، محمد رضا. (۱۳۹۳). تغییرات اقلیم و منابع آب. انتشارات دانشگاه سمنان.
2. حسن لی. علی مراد (۱۳۹۳). تغییرات اقلیمی و پیامدهای آن بر منابع آب و محیط زیست (راهمی‌های سازگاری و کاهش اثر). جهاد دانشگاهی مشهد.
نام فارسی درس: حمل رسوب

نام انگلیسی درس: Sediment Transport

تعداد واحد: 2

نوع واحد: واحد نظری

نوع درس: خاصیت انتخابی

پیشنهاد: ندارد

آموزش تکمیلی: ندارد

هدف درس: آشنایی با خصوصیات انواع رسوب، رفتار رسوب عامل تشکیل کننده حمل رسوب، رسوب گذاری و روش های انتقال گذاری به همراه تجزیه و تحلیل و تعیین و تخمین میزان رسوب.

سرفصل درس: ۳۲ ساعت نظری و ۰ ساعت عملی

خصوصیات آب و رسوب

مفهوم آستانه حرکت و کاربرد آن

مقاومت در برابر چرخش و شکل های مختلف بستر

انتقال بار مطلق و بستر بار کل

مقاومه و ارزیابی انواع حمل و حمل رسوب

تخمین میزان حمل رسوب

هیدرولوژی جریان و حمل رسوب دردودخانه

مدل سازی حمل رسوب و مورفولوژی رودخانه

رسوب گذاری در مخازن

روش ارزیابی:

<table>
<thead>
<tr>
<th>بورزه</th>
<th>آزمون های نهایی</th>
<th>میان ترم</th>
<th>ارزیابی مستمر</th>
</tr>
</thead>
<tbody>
<tr>
<td>۲۰ درصد</td>
<td>آزمون های نوشتاری ۵۰ درصد</td>
<td>۲۰ درصد</td>
<td>۱۰ درصد</td>
</tr>
<tr>
<td>عملکردی: ۰ درصد</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Manuscripts:

نام درس: تحلیل دینامیک سیستم‌های منابع آب
System Dynamic Approach in Water Resources

نام انگلیسی درس: نام انگلیسی درس: تعداد واحد: 2 واحد
نوع واحد: نظری
نوع درس: تخصصی انتخابی
پیشنهاد: ندارد
آموزش تکمیلی: ندارد

هدف درس: آشنایی با تفکر سیستمی در منابع آب در مقابل تفکر سیستمی در محیط‌های کاهشی، اجتماعی، اقتصادی و فنی؛ آشنایی با مدل Vensim و آشنایی با یک پروره جامع مدیریت منابع آب با استفاده از آن را کرد.

سرفصل درس: 22 ساعت نظری

1- معنی‌گویی انواع تفکر در حوزه مهندسی
 Erfahrene
 تفکر خصوصی
 تفکر سیستمی

ضرورت نیاز به تفکرهای سیستمی برای شیب‌سازی محیط‌های بیجیده

2- معنی‌گویی منابع و ابزارها

- معنی‌گویی منابع و ابزارها
 - معنی‌گویی انواع رفتار در تحلیل سیستم‌ها
 - معنی‌گویی رفتار باهه در تحلیل سیستم‌ها
 - معنی‌گویی انواع رفتار در تحلیل سیستم‌ها

(Cause-Loop- Diagram) CLD

- تعریف منابع و ابزارها
 - تعریف منابع و ابزارها

Flow و Stock
Stock-Flow

- ایجاد
- تعریف معادلات حاکم بر مدل
- نحوه کمی نمودن مدل و کالیبراسیون مدل
- تعریف سناریوها

5- ارائه کاربرد مدل های سیستمی در مباحث آب
- کاربرد در حوزه مدیریت منابع آب
 - مدل سازی بهره برداری از سدها
 - مدل سازی محیط‌های شهری
- کاربرد در محیط زیست

روش ارزیابی:

<table>
<thead>
<tr>
<th>نرخ پروژه</th>
<th>آزمون های نهایی</th>
<th>میان ترم</th>
<th>ارزیابی مستمر</th>
</tr>
</thead>
<tbody>
<tr>
<td>40 د رصد</td>
<td>نوشته‌ای 25 د رصد</td>
<td>15 د رصد</td>
<td>20 د رصد</td>
</tr>
</tbody>
</table>

منابع:

1- برادرورکورش، پژوهشی شناسی کسب و کار، تفکر سیستمی و مدلسازی برای جهانی پیچیده؛ ترجمه.

3- Vensim software: http://www.vensim.com/software.html

نام درس: مهندسی ارزش در مدیریت منابع آب

Value Engineering in Water Resources Management

تعداد واحد: ۲ واحد
نوع واحد: نظری
نوع درس: تخصصی انتخابی
پیشنهادی: ندارد
آموزش تکمیلی: ندارد

هدف درس: آشنایی و آموزش ارزش‌دهی جدید و کاربردی به‌هم‌بازی در حوزه مهندسی محیط زیست و مهندسی آب، آشنایی با تفکر خلاق در حوزه آب و تسلط بر برنامه کار ارزش

سرفصل درس: ۳۲ ساعت نظری

۱- مبانی تفکر منابع آب ارزش در حوزه محیط زیست
 آشنایی با مفاهیم ارزش
 آشنایی با مثلث تصمیم‌گیری
 آشنایی با شاخص ارزش
 آشنایی با روش‌های ارزش‌گذاری آکوستیک

۲- آشنایی با متدولوژی مهندسی ارزش
 آشنایی با سه گام پیش‌مطالعه، مطالعه و پس مطالعه
 آشنایی با شاخص فاز مطالعه

۳- آشنایی با انواع تکنیک‌های مهندسی ارزش (Value Analysis)
 (Value Engineering)
 (Value Planning)
 (Value Management)
 (Functional Analysis)

۴- آشنایی و تسلط بر تحلیل کارکرد
 انواع کارکردها
 الگوی ترسیم دیاگرام

۵- آشنایی و تسلط بر تکنيکهای خلاقیت
Brain Storming ✓
Delphi ✓
Aşna'iyi ba Roşh ✓
Gordon ✓
TRIZ ✓
Aşna'iyi ba Teknik ✓

- 6
Aşna'iyi ba Roşh Tahlīl Sālēse Mārātēyi Dr. Rīteh Bīnā Tāfjamī Māhīyat Zīst
Aşna'iyi ba Atnā Arosh Hāyi Wzdēhī
Aşna'iyi ba Roşh Fāzī
Aşna'iyi ba Roşh Fāzī

(VECP)
Aşna'iyi ba Mibāsī ✓
Aşna'iyi ba Dastūrāl Māl 290 Māal Vāntā Bīnāmī Tāzī-yi W Nūţār Rāh Pārdeyi
Nkq Dastūrāl Māl Hāy Mīwōrd

- 7
Sha'hār Ea'rosh Tāfjamī Māhīyat Zīstī

- 8
Hāzīn Hāyī Taflīl Ommī
Nŏhu Māsāhese Tḥālihī Drōh Ommī
Rōsh Hāyī Arosh Gāzārī Dr. Hōwzī Māhīyat Zīstī W Akuwīsemsī Hāy
Mīrī Sha'hār Arosh Mīsīntī Br Rūdīkūrd Arosh
Rōsh Hāyī Tūmīn Shāhāx Arosh

- 9
Tjarhī Emālī Pīa'hāsāzī Mīhīnsī Arosh Dr. Hōwzī Mīdīryt Mīnāb Āb
Pīa'hāsāzī Mīhīnsī Arosh Dr. Hōwzī Thāmin Āb (Sd. W Shēkhe)
Pīa'hāsāzī Mīhīnsī Arosh Dr. Hōwzī Mīdīryt Kīfī Mīnāb Āb
Pīa'hāsāzī Mīhīnsī Arosh Dr. Hōwzī Kntāl Sīlap (Sīsemtēs Hāy Kntāl Sīlap)
Pīa'hāsāzī Mīhīnsī Arosh Dr. Hōwzī Atnāl Āb
Ejarāy Čnnd Mord Emālī Mītalāt Kōnāh W Tkkār Pēzhīr

روش ارزیابی:

<table>
<thead>
<tr>
<th>پروژه</th>
<th>ارزشیابی نهایی</th>
<th>میانه ترم</th>
<th>ارزشیابی مستمر</th>
</tr>
</thead>
<tbody>
<tr>
<td>125 درصد</td>
<td>نوشتری: 20 درصد</td>
<td>15 درصد</td>
<td>20 درصد</td>
</tr>
</tbody>
</table>
1) Annual Value Engineering Program Report; Fiscal Years 1996, 1998 & 2000; Department of the Interior; USBR

2) Value Engineering Annual Report; FY 2000/2001; Florida Department of Transportation; USA, 2002

3) "Standard Procedure for Value Engineering in Construction"; Construction Management; Policy No. 510-008(sp); 2003

4) "Policy for Value Engineering Program"; Engineering Policy; No. 510-001(p); USA; 1998

5) www.fhwa.dot.gov/ve/

6) "Annual Federal-aid Value Engineering Summary Report"; FHWA; 1997-2004

7) "Nova Award Nomination 27"; FHWA; 2000

8) "Innovative Approaches to increasing Contractor participation in the Acquisition Environment"; SAVE International Conference proceedings; 1997

9) "Why Project Managers Should Take Control of Value Engineering Process"; Jill Nelson, Terry Hays; AASHTO Conference; 2003

12) Draft of the Value Engineering Incentive (REV 11-14-05; FA 12-14-05), Sub-article 4-3.9, Expected Implementation July 2006.

15) California Department of Transportation-CDOT's Standard Specifications for Road and Bridge Construction, Revision of Section 104, Value Engineering Change Proposals, August 2005.

18) Value Engineering Change Proposal in Bureau of Reclamation, USA

20) Environmental Value Engineering, Beyond Green, Roudaboush Wilfred, 8th Ball state university, Sep 2009.

نام فارسی درس: مدلسازی آب‌های زیرزمینی
نام انگلیسی درس: Groundwater modeling
تعداد واحد: ۲ واحد
نوع واحد: نظری
نوع درس: تخصصی انتخابی
پیشنهاد: ندارد
آموزش تکمیلی: ندارد
هدف درس: استحکام دانشجویان با چرایان آب‌های زیرزمینی و انتقال آلودگی در آب‌های زیرزمینی و کنترل و قرارگیری آلودگی.
سرفصل درس: ۲۲ ساعت نظری و ۳۰ ساعت عملی
۱. اصول چرایان زیرزمینی
۲. معادلات ترکیبی و پی رسانی و توزیع حجمی و زمینی آلاینده‌ها در آب‌های سطحی
۳. تنش فرازاده‌های بیوشیمی و انتقال چرای در منابع اکسیژن آب‌های سطحی
۴. آشنایی با موارد مختلف آب‌های سطحی آلوده
۵. خواص سفره‌های زیرزمینی
۶. مسیرهای چرایان زیرزمینی
۷. انتقال آلودگی در آب‌های زیرزمینی
۸. پاک‌سازی آلودگی زیرزمینی
۹. مدل مفهومی چرایان آب‌های زیرزمینی
روش ارزیابی:

<table>
<thead>
<tr>
<th>پروژه</th>
<th>آزمون‌های نهایی</th>
<th>میان ترم</th>
<th>ارزش‌های مستمر</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>۳۰ دارد</td>
<td>۲۰ دارد</td>
<td>۱۰ دارد</td>
</tr>
<tr>
<td>نوشته‌های</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>عملکردی</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

۷۰
منابع:
1- چیت سازان منوجهر " مدل سازی آلاینده رو به زمینی" انتشارات دانشگاه شهید چمران اهواز ۱۳۸۱
4- De Marsily, G., (1986),” Quantitative hydrogeology,” Academic Press Inc
نام فارسی درس: مدلسازی آب‌های سطحی
Surface Water Modeling:

تعداد واحد: ۲ واحد

نوع واحد: نظری

نوع درس: تخصصی انتخابی

پیشنهاد: ندارد

آموزش تکمیلی: ندارد

هدف درس: آشنایی با مفاهیم بسط و توزیع روش‌های مختلف برای مدلسازی رفتار رودخانه و انتقال آلاینده‌ها در این محیط‌ها. دانشجو با پایدار تغییرات و قوت در یکی از تکنیک‌های ابزار برای مدلسازی بطوری که قادر باشند روش مناسب را برای یک مسئله معین انتخاب نمایند.

سرفصل درس: ۲۲ ساعت نظری و ۱ ساعت عملی

اصول جریان آب‌های سطحی

خواص منابع آب سطحی

تغییر مسیری آب راه‌های شهری و شهرستانی

انتقال آلاینده‌ها در آب‌های سطحی

ضرورت و نیاز به مدلسازی

ارائه روش‌های کلی مدلسازی و تاریخچه‌ای از مدل‌های کامپیوتری آب‌های سطحی

بحث در خصوص نحوه پیاده‌کردن یک مدل مفهومی به نحوی که برای مدلسازی مناسب باشد.

Mike11, Quale2k, HEC series, ...

معرفي مدل‌های موجود مانند ...

روش ارزیابی:

<table>
<thead>
<tr>
<th>پروژه</th>
<th>آزمون‌های نهایی</th>
<th>میان‌ترم</th>
<th>ارزیابی مستمر</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۰ درصد</td>
<td>نوشته‌ای: ۴۰ درصد</td>
<td></td>
<td></td>
</tr>
<tr>
<td>عامل‌مندی: ۳ درصد</td>
<td>۳۰ درصد</td>
<td>۱۰ درصد</td>
<td></td>
</tr>
</tbody>
</table>
نام درس: مدلسازی سیلاب
Flood Modeling
نام انگلیسی درس: تعداد واحد: ۲ واحد
نوع واحد: نظری
نوع درس: تخصصی انتخابی
پیشنهاد: ندارد
آموزش تکمیلی: ندارد
هدف درس: آشنایی با مبانی سیلاب، نحوه تشکیل و مدیریت آن در حوضه‌های آبریز مختلف و تسلط بر دو نرم افزار ویژه مدلسازی سیلاب
سفرصل درس: ۲۲ ساعت نظری
۱- اهمیت مدیریت سیلاب
- تعریف سیلاب
- خسارات و پیامدی ناشی از سیلاب
- مرکز سیلاب‌های جهان
- الگوهای مدیریتی و کنترل سیلاب
۲- مبانی هیدرولوژی
- تعریف حوضه آبریز
- مسیرهای فیزیکی حوضه آبریز
۳- مبانی سیلاب
- تعریف هیدرگراف
- مبانی هیدرگراف واحد
- مبانی شبیه‌سازی سیلاب
- تعریف انواع سیلاب (مانند تند سیلاب‌ها و...)...
۴- ضوابط سیلاب طراحی
- ضوابط سیلاب طراحی سدهای یازده
- ضوابط سیلاب طراحی شهری
روش ارزیابی:

<table>
<thead>
<tr>
<th>بروزه</th>
<th>آزمون های نهایی</th>
<th>میان ترم</th>
<th>ارزیابی مستمر</th>
</tr>
</thead>
<tbody>
<tr>
<td>۳۰ درصد</td>
<td>توشتاری: ۲۰ درصد</td>
<td>۲۰ درصد</td>
<td>۲۰ درصد</td>
</tr>
</tbody>
</table>

مراجع:
۱- علیزاده، امین: اصول هیدرولوژی کاربردی، دانشگاه فردوسی مشهد، ۸۰۰ ص؛ چاپ ۲۸ ام؛ ۱۳۹۴
۲- سلیمانی، کریم: هیدرولوژی و مدلسازی گمی سیالاب شهری در محیط کشاورزی و منابع طبیعی ساری؛ ۱۳۹۴
نام فارسی درس: مدیریت کیفی روان آب‌های شهری

نام انگلیسی درس: Quality Management of Urban Runoff

تعداد واحد: 2

نوع واحد: 2 واحد نظری

نوع درس: تخصصی انتخابی

پیشنهاد نداده

آموزش تکمیلی: ندارد

هدف درس: استنباطی دانشجویان با اثرات توسعه شهری بر چرخه هیدرولوژی، طراحی استراتژی کنترل آلودگی‌ها روان آب شری از طریق کارکرده‌های نشان دهنده (LID) و توسعه روش بهره‌برداری (BMP) می‌باشد.

نظر گرفتن ماهیت چندشاخه‌ای یوو در مدیریت روان آب سطحی، استنباطی با تکنیک‌ها مدیریت روان آب سطحی مانند HEC-HMS نیز ازجمله اهداف این درس می‌باشد.

سرفصل درس: 32 ساعت نظری

- شرایطی و اثرات آن بر متان آب
- ویژگی‌های روان آب و اثرات آن بر کیفیت آب
- هیدرولوژی شری از طریق توانایی شرایط سطحی: برای بررسی بررسی کردن طراحی برای زیرساخت‌های آبی، تعیین نرخ روان آب و حجم آن

مدیریت کمی و کیفی روان آب با بهره‌گیری از روشهای غیر سازه‌ای و مدیریتی

- ویژگی‌های روان آب و متان آلودگی، مسائل و مشکلات روان آب و اثرات مربوط به بهره‌برداری از آب‌های بهره‌بردارهای پذیرفته

استفاده از مدلهای روان آب برای ارزیابی مسائل محلی و بسط و توسعه راه حل‌های صرفه جویانه

- نحوه جمع، حمل و نسبت شدن آلودگی‌ها

- روندی‌های جریان آلودگی‌ها در شبکه‌های زهکشی روان آب‌ها

- کنترل روان آب‌ها

- برطرف کردن آلودگی‌ها در شبکه‌های فاضلاب و تاسیسات ذخیره و یا تصفیه

- هیدرولیک سیستم‌های ترکیبی فاضلاب. محاسبه با آلودگی‌های کانالی شهروی

- طراحی خوشه‌ها برای کنترل سیلاب شهری و آلودگی‌ها غیر کانالی

- مواد جامد معلق (ناتئی از فراوده‌های فیزیکی و شیمیایی)

- فرسایش، رسوب و کدورت

74
شرح ارزیابی:

<table>
<thead>
<tr>
<th>پرونده</th>
<th>آزمون های نهایی</th>
<th>میان نمره</th>
<th>ارزیابی مستمر</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 درصد</td>
<td>آزمون های نوشته‌ای: 70 درصد</td>
<td>20 درصد</td>
<td>10 درصد</td>
</tr>
<tr>
<td></td>
<td>عملکردی: 30 درصد</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

متن:

نام فارسی درس: هیدرولوژی‌ریاضیاتی

Hydroinformatics

نام انگلیسی درس:

تعداد واحد: ۲

نوع واحد: نظری

نوع درس: تخصصی انتخابی

پیشنهاد: ندارد

آموزش تکمیلی: ندارد

هدف درس: در این درس، مباحث نوین در سال‌های اخیر در علوم کامپیوتر و توسعه غیرت و کاربردهای مختلفی در علوم آب پیدا نموده‌اند. مورد بررسی قرار می‌گیرند.

سروصل درس: ۲۲ ساعت نظری و ۰ ساعت عملی

۱- آشنایی با مباحث نوین در علوم آب
۲- آشنایی با شبیه‌سازی و بهینه‌سازی
۳- شبکه عصبی
۴- الگوریتم ژنتیک
۵- منطق فازی
۶- آشنایی با GIS
۷- کاربرد مباحث فوق در مدل‌سازی و برنامه نویسی در محیط
۸- آشنایی با نرم‌افزارهای موجود در زمینه‌های فوق مانند Mike Hec-Ras و...

روش ارزیابی:

<table>
<thead>
<tr>
<th>پروژه</th>
<th>آزمون های نهایی</th>
<th>میان ترم</th>
<th>ارزیابی مستمر</th>
</tr>
</thead>
<tbody>
<tr>
<td>۴۰ درصد</td>
<td>آزمون های نوشته‌ای: ۲۰ درصد</td>
<td>۲۰ درصد</td>
<td>۱۰ درصد</td>
</tr>
<tr>
<td>عملکردی: ۰ درصد</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

منابع:

۱. کورپزن، ؛(۱۳۸۱). کاربرد منطق فازی در علوم آب.
3. Computational Intelligence and Technological Developments in Water Applications.” Springer, Germany.

5. User Manuals of Softwares
نام درس: هیدرولوژی آلایندها

نام انگلیسی درس: Hydrology of Pollutants

تعداد واحد: ۲

نوع واحد: نظری

نوع درس: تخصصی انتخابی

پیشنهاد ندارد

آموزش تکمیلی: آزمایشگاه

هدف درس: آشنایی دانشجویان با رفتار آلاینده ها در محیط زیست و عوامل موثر بر آنها

سرفصل درس:

۱. آشنایی دانشجویان با اهداف درس و دیدگاهی از رئوس مطالب

۲. گونه سازی عناصر در محیط های رودخانه‌ای

۳. نقطه Eh/pH در کنترل غلظت فلزات سنگین

۴. آشنایی با رزم افزار HSC و نحوه کارکرد آن

۵. روش های حذف فلزات سنگین از محیط های آبی توسط فرآیندهای طبیعی

۶. نحوه انتقال آلاینده ها از رسوب به آب

۷. نحوه جذب آلاینده های فلزی محلول در آب بر روی رسوبات

۸. نقطه مکانی ها در جنب آلاینده ها

۹. پیوندهای سیستم، سولو فیدی و آلی فلزات سنگین

۱۰. نحوه انتقال آلاینده از یک محیط به محیط دیگر تحت شرایط اکسایش و احیاء

۱۱. روش‌های آماری در تجزیه و تحلیل داده‌های هیدرولوژیکی

۱۲. آشنایی با رزم افزار SWMM و نحوه کارکرد آن

۱۳. توان خودپالایی رودخانه‌ها و نقش آن در سرنوشت آلاینده‌های فلزی

۱۴. توان خودپالایی رودخانه‌ها و نقش آن در سرنوشت آلاینده‌های آلی

۱۵. نقطه ستون خاک در حذف آلودگی های فلزی

۱۶. نقطه ذرات نانو در حذف آلاینده های فلزی در محیط‌های آبی

۱۷. آشنایی با روش‌های انتخابی گیری در آزمایشگاه
روش ارزیابی:

<table>
<thead>
<tr>
<th>آزمون های نهایی</th>
<th>میان ترم</th>
<th>ارزیابی مستمر</th>
</tr>
</thead>
<tbody>
<tr>
<td>پروژه</td>
<td>20 درصد</td>
<td>15 درصد</td>
</tr>
<tr>
<td>آزمون های نوشته‌ای: 50 درصد</td>
<td></td>
<td></td>
</tr>
<tr>
<td>عملکردی</td>
<td>15 درصد</td>
<td></td>
</tr>
</tbody>
</table>

منابع:
- کرباسی، عبدالرضا و بیاتی، آیدا (1393) کتاب راهنمای نمونه پردازی و آنالیز سم شناختی رسوبات، جاپ
- دانشگاه تهران
نام فارسی درس: توسعه پایدار منابع آب زیرزمینی
Sustainable Development in Groundwater Resources:

تعداد واحد: ۲ واحد

نوع واحد: نظری

نوع درس: تخصصی انتخابی

پیشنیاز: ندارد

آموزش تکمیلی: ندارد

هدف درس: آشنایی دانشجویان با جریان آب در کنارها و آبگذرها و ذخیره آب در مخازن رو بار و بستر

سرفصل درس: ۲۲ ساعت نظری و ۱۰ ساعت عملی

1. شناخت منابع آب‌های زیرزمینی
2. انواع لایه‌های آب‌دار
3. قانون دارسی
4. معادلات حرکت آب‌های زیرزمینی
5. جریان‌های پایدار و نایپایدار آب‌های زیرزمینی
6. هیدرولیک چاه
7. حل معادلات آب‌های زیرزمینی
8. مدلهای آب‌های زیرزمینی
9. انتخاب گیره پارامترهای
10. پروژه

روش ارزیابی:

<table>
<thead>
<tr>
<th>پروژه</th>
<th>ارزیابی های نهایی</th>
<th>میان‌ترم</th>
<th>ارزیابی مستمر</th>
</tr>
</thead>
<tbody>
<tr>
<td>ندارد</td>
<td>نوشته‌ای: ۰ درصد</td>
<td>۳۰ درصد</td>
<td>۱۰ درصد</td>
</tr>
<tr>
<td>عملکردی: ۰ درصد</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

۸۳
2. Groundwater and Surface Water Pollution, David H.F.Liu, Bela G. Liptak, CRC Press, 1999
نام درس: قابلیت اطمینان در سیستم‌های منابع آب
Reliability in Water Resources Management

تعداد واحد: ۲ واحد

نوع واحد: نظری

نوع درس: تخصصی انتخابی

پیشنهاد ندارد

آموزش تکمیلی: ندارد

هدف درس: شناخت از موضوع و مفاهیم قابلیت اطمینان، ریسک و تحلیل ریسک، ارائه مطالعات موردی قابلیت اطمینان در سیستم‌های منابع آب مشتمل بر حوزه‌های کیفیت و کیفیت آب، ارائه گام‌های تحلیل ریسک، ارائه روش‌های مدل‌سازی و روش‌های ارزیابی کمی ریسک و ارائه روش‌های مدیریت ریسک در منابع آب.

FORM

شناخت ریسک و قابلیت اطمینان در منابع آب

سرفصل درس: ۳۲ ساعت نظری

۱- مفاهیم

آشنایی با مفاهیم قابلیت اطمینان ✓

آشنایی با مفاهیم ریسک ✓

آشنایی با مفاهیم دهنده ریسک‌های مختلف ✓

۲- گام‌های مدیریت ریسک

شناساپی انواع ریسک ✓

تحلیل ریسک ✓

کمی سازی ریسک ✓

مدیریت ریسک ✓

۳- آشنایی روش‌های شناسایی ریسک

 روشهای طبیعی (Event Tree) ✓

 روشهای طبیعی (Fault Tree) ✓

۲- آشنایی با روش‌های کاربردی

آشنایی با روش مونت کارلو ✓

آشنایی با روش FORM ✓

آشنایی با روش اصلاح شده FORM ✓

۸۵
روش ارزیابی:

<table>
<thead>
<tr>
<th>پروژه</th>
<th>آزمونهای نهایی</th>
<th>میان ترم</th>
<th>ارزیابی مستمر</th>
</tr>
</thead>
<tbody>
<tr>
<td>300 درصد</td>
<td>نوشته: 200 درصد</td>
<td>20 درصد</td>
<td>20 درصد</td>
</tr>
</tbody>
</table>

منابع:

نام فارسی درس: تعیین بار آلودگی در محیط‌های آبی
Pollution Load Measurement in Aquatic Environment

تعداد واحد: ۲
نوع واحد: نظری
نوع درس: تخصصی انتخابی
پیشنهادی: ندارد
آموزش تکمیلی: از مایحتاجه

هدف درس: آشنایی دانشجویان با روش‌های صحیح و به روز تعیین بار آلودگی در محیط‌های آبی

سرفصل درس:

۱- فرآیند لخته سازی در مصب رودخانه (تحویل جمع آوری نمونه آب و اقدامات اولیه)
۲- فرآیند لخته سازی و اجرای آن بصورت آگواروبی
۳- معرفی پارامترهای مهم در ایجاد لخته
۴- لخته سازی الکتریکی و پارامترهای موثر بر آن

HSC گونه سازی عنصر در محیط‌های آبی شامل معرفی نرم‌افزار

۶- اهمیت رسوبات در پرآورد بار آلودگی و معرفی وسایل نمونه برداری و اقدامات اولیه پس از جمع آوری نمونه
۷- پرونده عنصر با فاکتور مختلف رسوبی و تعیین سهم فعالیت‌های انسانساخت در توزیع عنصر

۸- دسترسی پذیری عنصر و نحوه آزمایشات آن

۹- معرفی شاخص‌های شدت آلودگی

۱۰- حل تمرینات بصورت کارگاه در مورد محاسبات عددي و آماري بار آلودگی در رسوبات محیط‌های آبی

۱۱- اهمیت رفتارهای خودداری و غیر خودداری عنصر در ذرات محلق رودخانه ها بر محیط زیست آبی

Eh، ORP

۱۲- واکنش‌های آب و رسوب با تاکید بر نیاز بر توانایی احیاء

۱۳- نحوه تجزیه کامل و بدست آوردن غلظت کل عنصر در رسوبات

۱۴- معرفی نرم افزار آمادی و نحوه تجزیه و تحلیل بار آلودگی در محیط‌های آبی

۱۵- حل تمرین بصورت کارگاه در مورد محاسبات عددي و آماري فرآیند لخته سازی

۶۸
روش ارزیابی:

<table>
<thead>
<tr>
<th>بروزه</th>
<th>آزمون های نهایی</th>
<th>میان ترم</th>
<th>ارزشیابی مستمر</th>
</tr>
</thead>
<tbody>
<tr>
<td>۲۰ درصد</td>
<td>آزمون های نوشته‌ای: ۵۰ درصد</td>
<td>۱۵ درصد</td>
<td>۱۵ درصد</td>
</tr>
<tr>
<td>عملکردی: ۰ درصد</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

منابع:

- کرباسی، عبدالرضا و بیاتی، آیدا ۱۳۹۲ کتاب راهنما نمونه برداری و آنالیز سم شناختی رسوبات. جامع دانشگاه تهران

نام فارسی درس: واکنش آب و رسوب
نام انگلیسی درس: Water & Rock Interaction
تعداد واحد: ۲
نوع واحد: نظری
نوع درس: تخصصی
پیشنهاد: ندارد
آموزش تکمیلی: آزمایشگاه
هدف درس: آشنایی دانشجویان با واکنش‌های آب و رسوب در محیط‌های آبی و خصوصاً سده‌های آبی و تغییرات کیفیت آب
سرفصل درس:
۱- پارامترهای موثر در واکنش آب و رسوب
۲- رفتارهای خودداری و غیرخودداری الاینده‌های فلزی در رودخانه و مصب
۳- شیمی ذرات معلق و نقش آن در کنترل کیفیت آب رودخانه
۴- نحوه جذب الاینده‌های فلزی محول در آب بر روی رسوبات
۵- نقش میترال‌های جذب الاینده‌ها
۶- پیوندهای سست‌سولفیدی و آی آذرین سنتگین
۷- نحوه انتقال الاینده از یک محیط به محیط دیگر تحت شرایط اکسایش و احیاء
۸- روش‌های آماری در تجزیه و تحلیل داده‌های هیدرولوژیکی
۹- آشنایی با نرم‌افزار SWMM و نحوه کارکرد آن
۱۰- توان خودپاپن‌یابی رودخانه‌ها و نقش آن در سرنوشت الاینده‌های فلزی
۱۱- توان خودپاپن‌یابی رودخانه‌ها و نقش آن در سرنوشت الاینده‌های آلی
۱۲- نقش ستوان خاک در حذف الودگی‌های فلزی
۱۳- نقش ذرات نانو در حذف الاینده‌های فلزی در محیط‌های
۱۴- روش‌های اندوزه‌گیری الاینده‌های فلزی بصورت تنوری و آزمایشگاهی
۱۵- روش‌های اندوزه‌گیری آلاینده‌های فلزی بصورت تنوری و آزمایشگاهی

۹۰
روش ارزیابی:

<table>
<thead>
<tr>
<th>بروزه</th>
<th>آزمون های نهایی</th>
<th>میان ترم</th>
<th>ارزیابی مستمر</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 درصد</td>
<td>آزمون های نوشتاری: 50 درصد</td>
<td>15 درصد</td>
<td>15 درصد</td>
</tr>
<tr>
<td>عملکردی</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

منابع:
- کریاسی، عبدالرضا و بیاتی، آیدا 1393 کتاب راهنمای تمونه برداری و آنالیز سم شناختی رسوبات. جاب
- دانشگاه تهران
نام فارسی درس: مدیریت کیفی مخازن و پهنه‌های آبی

نام انگلیسی درس: Quality management of reservoirs and water bodies

تعداد واحد: ۲ واحد

نوع واحد: نظری

نوع درس: تخصصی انتخابی

پیشنهاد ندارد

آموزش تکمیلی: ندارد

هدف درس: آشنایی دانشجویان به‌منظور محیط زیست گزارش مبنای آب با عوامل مهم و تأثیر گذار بر آبهای زیر زمینی، ناحیه حرکت آبهای زیر زمینی در محیط های مختلف با تأثیر گذاری رو به سمت پراکندگی آب‌های زیر زمینی و محیط آبخوان و ناحیه پخش و پراکنش آب‌های زیر زمینی در آبهای زیر زمینی.

سرفصل درس: ۳۲ ساعت نظری و ۰۰ ساعت عملی

۱- مقدمه

۲- تاریخچه آبهای زیرزمینی

آبخوان و ناحیه زیر آبی

چرخه هیدرولوژی و آبهای زیرزمینی

بیان آب و هیدرولوژیکی

مقادیر آب در چرخه هیدرولوژیکی

مشخصات محیط متخلف

قانون دارسی و حدود اعتبار آن و هدایت هیدرولوژیکی

۳- جریان های ورقهای و متلاطم

جریان پاییندر و ناپایین

معادله برنولی بر هیدرولوژیکی

معادله تحریک دارسی

واحدهای، عوامل موتوری و بعنوان هدایت هیدرولوژیکی و تفویضی

محیط های همگن و همسان در هدایت هیدرولوژیکی

محیط‌های همگن و ناهمگن

معادله دارسی در جریان‌های بعدی
پتانسیل سرعت و تعیین جهت حرکت

معادلات دیفرانسیل جریان‌های آب زیرزمینی

نشانه موثر در آبخوانی

ذخیره ویژه، ضریب خیه و انتقال پذیری (آبخوان بسته و باز)

نوشته‌ها تراز آب زیرزمینی و سطح پیازه‌تری

معادله پیوستگی

معادله دیفرانسیل جریان آب زیرزمینی در محیط اشباع (باز و بسته و

نیمه بسته (پراشی)

فرشات دوبوی-فورشپرم

معادله بوسینسک

تابع تولید و مصرف

شبکه جریان، جریان پتانسیل و تحلیل شبکه جریان

حل تحلیل مسائل جریان

حل ریاضی مسائل آبخانی زیرزمینی

تخمین ضرابی، شریط مرزی، شرایط اولیه

مسائل جریان پایدار و ناپایدار یک بعدی در آبخوانها (بسته با ضخامت

ثابت و متغیر)

جریان پایدار در آبخوان بز (تغذیه از بالا)

گالری زمین‌کشی با مجرای زمین‌کشی

جریان یک بعدی ناپایدار در آبخوان بز با تغییر ناگهانی در مرز (و نیمه

بسته)

هدیه‌نامه چاچا دیپ

طزر کار کام، تعیین فرضیات اساسی، معادلات حاکم

معادلات برای فروکش با افت سطح آب (آبخوان های بز، بسته و نیمه

بسته)

اصلاً برهم نهی، یا ترکیب اثرها

گاه در نزدیکی مرزهای آبخوان (رودخانه، نفوذ ناپایدار، نفوذ نسبی یا

ناقص)
روش ارزیابی:

<table>
<thead>
<tr>
<th>برخورد</th>
<th>آزمون های نهایی</th>
<th>میان ترم</th>
<th>ارزیابی مستمر</th>
</tr>
</thead>
<tbody>
<tr>
<td>ندارد</td>
<td>نوت‌شماری: ۵ درصد</td>
<td>۴۰ درصد</td>
<td>۱۰ درصد</td>
</tr>
<tr>
<td>عملکردی: ۰ درصد</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

منابع:
کاراموز، مهدی؛ رضا کرایچی، ۱۳۸۲. برنامه‌ریزی و مدیریت کیفی سیستم‌های منابع آب. انتشارات دانشگاه صنعتی امیرکبیر.

نام درس: تجارت کیفیت آب
نام انگلیسی درس: Water Quality Trading
تعداد واحد: ۲ واحد
نوع واحد: نظری
نوع درس: نظری-اختراعی
پیشنهاد: ندارد
آموزش تکمیلی: ندارد
هدف درس: آشنایی با اصول نوین مدیریت کیفیت آب و روش‌های کنترل و کاهش منابع آلاینده نقطه‌ای و غیر نقطه‌ای با استفاده از مکانیزم‌های انگشتی در مدیریت آلوده کننده‌ها با استفاده از مبانی اقتصاد محیط زیست
سرفصل درس: ۳۲ ساعت نظری

۱- شناخت پارامترها و شاخص‌های کیفیت آب
 آشنا با پارامترها فیزیکی
 آشنا با پارامترها شیمیایی
 آشنا با پارامترها بیولوژیکی
 آشنا با شاخص‌های زیستی
 آشنا با میزان‌ها و شاخص‌های کیفیت آب

۲- آشنایی با نوع منابع آلاینده
 منابع آلاینده طبیعی و انسانی
 منابع آلاینده نقطه‌ای و غیر نقطه‌ای

۳- آشنایی با نحوه سنجش میدانی پارامترهای کیفی و طریقی شکل‌بندی
 نحوه تعیین ایستگاه‌های سنجش پارامترهای کیفی
 انتخاب پارامترهای کیفی آب
 نحوه تعیین توانان نمونه برداری
 معرفی برخی دستگاه‌های سنجش پارامترهای کیفی
 نکات مهم در سنجش‌های میدانی

۴- آشنایی با واکنش‌های مواد الاینده در محیط‌های بذرین‌های آبی
 انواع واکنش‌ها و راکتورهای
- چهارم مواد آلاینده مختلف در محیط

- آشنایی با مدل‌سازی کیفی رودخانه‌ها

- معادلات پخش و انتقال آلودگی

- مدل‌سازی اکسیژن محلول در محیط آبی رودخانه‌ای

- بررسی تغییرات شوری آب در رودخانه‌ها

- روش‌های عده‌ای حل معادلات پخش و انتقال آلودگی

- معرفی نرم‌افزارهای مناسب شبیه‌سازی کیفیت آب رودخانه

- معرفی روش‌کردهای مختلف در مدیریت محیط‌زیست

- معرفی مدل فکری بدنی‌ای

- معرفی مدل فکری خوشبختی

- معرفی مدل فکری مبتنی بر توسه پایداری

- معرفی مبانی اقتصاد محیط‌زیست

- معرفی انواع سیستم‌های اقتصادی در مدیریت محیط‌زیست

- معرفی انواع مدل‌های مرسوم به‌همگی

- تشریح منافع و هزینه حاشیه‌ای

- تشریح خسارت‌های محیط‌زیستی

- معرفی روش‌کردهای منافع و هزینه در محیط‌زیست

- معرفی روش‌کردهای حداق‌های هزینه در محیط‌زیست

- (Externality)

- معرفی مفهوم برونزایی

- معرفی حق مالکیت در محیط‌زیست

- (Environmental Markets)

- بررسی بازارهای زیست‌محیطی

- بررسی و تحلیل انواع سیاست‌های انگیزشی و غیر انگیزشی در مدیریت محیط‌زیست

- (C&CC)

- سیاست دستور و کنترل (LC)

- سیاست حداق‌های هزینه (UT)

- سیاست عملکرد یکنوخخت (EC)

- سیاست انتشار (ZP)

- سیاست زون‌بندی (TDP)

- سیاست مجوزهای قابل انتشار (Least Cost)

- بررسی مدل‌های کم‌میزانی هزینه (ZP)
10. مدرک ملی تجارت بار آلودگی (Emission Permit System-EPS)
11. مدرک ملی تجارت کیفیت مهیجی (Ambient Permit Systems-APSSs)
12. مدرک ملی تجارت کیفیت تک استخراجی
13. مدرک ملی تجارت کیفیت متعدد استخراجی

روش ارزیابی:

<table>
<thead>
<tr>
<th>پروژه</th>
<th>آزمون های نهایی</th>
<th>میان ترم</th>
<th>ارزیابی مستمر</th>
</tr>
</thead>
<tbody>
<tr>
<td>۳۰ درصد</td>
<td>نوت‌سایری: ۳۰ درصد</td>
<td>۲۰ درصد</td>
<td>۲۰ درصد</td>
</tr>
</tbody>
</table>

منابع:
1) سارنگ، امین: عداد محجوبی، مجتبی اردستایی و محمدحسن نیک سخن؛ ۱۳۹۲؛ کتاب جامع دستورالعمل تجارت کیفیت منابع آب، انتشارات خوارزمی؛ تهران: ایران.
2) سارنگ، اب: شمسی، ابراهیمی و.م. تجریشی؛ ۱۳۸۵. تجارت آلودگی آب رویکردی نو و کارا در مدریت کیفی منابع آب. دومین کنفرانس مدریت منابع آب، دانشگاه صنعتی اصفهان، اصفهان.

نام فارسی درس: کیفیت آب‌های زیرزمینی
نام انگلیسی درس: groundwater quality
تعداد واحد: 2
نوع واحد: 2 واحد نظری و 0 واحد عملی
نوع درس: تخصصی انتخابی
پیش‌نیاز: ندارد
آموزش تکمیلی: ندارد
هدف درس: هدف این درس آشنایی به مسائل و مفاهیم کیفیت آب‌های زیرزمینی اعم از محیط طبیعی و غیرطبیعی (آب‌های ساخت و شناخت فرآیندها در محیط آبی و ارتباط آنها با کیفیت آب‌های زیرزمینی و انرژی زیستمحیطی آن.
سرفصل درس: 32 ساعت نظری و 0 ساعت عملی

1- آب در یک تگه کلی: آب واقعیت آن، خاصیت های ویژه آب، آب در جهان، وضعیت آب‌های ایران
2- دانش هیدرولوژی
3- تغییرات آب‌های زیرزمینی: بارندگی، انرژی تغییرات آب‌های زیرزمینی
4- هم‌نشانی آب‌های زیرزمینی: تغییرات طبیعی و غیرطبیعی
5- تغییرات وضعیت آب‌های زیرزمینی و عناصر تشکیل دهنده آنها
6- عناصر محلول غیر محلول آلی، معدنی و عنصر کمیاب
7- تأثیر نوع سفره آب زیرزمینی روی کیفیت آب زیرزمینی، کیفیت آب در سطح‌های رسوبی (گچی، نمکی، آهکی)
8- تغییرات وضعیت آب زیرزمینی از نظر مصرف‌اشامیدنی، کشاورزی صنعتی و آب درمانی
9- سفره آب زیرزمینی روی سطح آب زیرزمینی، سطح آب زیرزمینی روی سطح آب زیرزمینی، سطح آب زیرزمینی روی سطح آب زیرزمینی
10- تغییرات وضعیت آب زیرزمینی از نظر شرکت آن در چرخه طبیعی آب
11- تغییرات وضعیت آب زیرزمینی، سطح آب زیرزمینی، سطح آب زیرزمینی، سطح آب زیرزمینی
12- تغییرات وضعیت آب زیرزمینی، سطح آب زیرزمینی، سطح آب زیرزمینی
13- تغییرات وضعیت آب زیرزمینی، سطح آب زیرزمینی
14- تغییرات وضعیت آب زیرزمینی، سطح آب زیرزمینی
15- تغییرات وضعیت آب زیرزمینی، سطح آب زیرزمینی
روش ارزیابی:

<table>
<thead>
<tr>
<th>پروژه</th>
<th>آزمون های نهایی</th>
<th>میان ترم</th>
<th>ارزیابی مستمر</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>40 درصد</td>
<td></td>
<td>10 درصد</td>
</tr>
<tr>
<td></td>
<td>عمکرکی 10 درصد</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

منابع :
1- Matthess, G (2002). Die beschaffenheit des grundwassers
2- Ralph C. Health (2000). Einfuierung in die grundwasserhydrologie
3- W. Mike Edmunds, Paul Shan (2008). Natural groundwater quality
4- Mustafa M. Aral, Stewart W. Taylor (2011). Groundwater quality and quality management
5- Piote Malaszewski, Stanislaw Witczak, Grzegorz Malina (2012). Groundwater quality sustainability
نام فارسی درس: آلودگی آب‌های سطحی و زیر سطحی
نام انگلیسی درس: Surface and Groundwater Pollution
تعداد واحد: ۲
نوع درس: تخصصی انتخابی
پیشنهاد ندارد
آموزش تکمیلی: ندارد
هدف درس: آشنایی دانشجویان با آلودگی آب‌های سطحی و روشهای کنترل آلودگی آب‌های سطحی

سرفصل درس: در تئوری و عمل
۱) معادلات تعادل جرم برای بررسی ویژگی‌ها و توزیع حجمی و زمانی آلی‌های آلودگی در آب‌های سطحی,
۲) نشان دادن زمانی و زمانی عوامل آلودگی در آب‌های سطحی,
۳) ارزیابی با موارد مختلف آلودگی آب‌های سطحی,
۴) آشنایی با موارد مختلف آلودگی آب‌های سطحی آلوده,
۵) پژوهش

روش ارزیابی:

<table>
<thead>
<tr>
<th>پروژه</th>
<th>آزمون‌های نهایی</th>
<th>میان‌نمای</th>
<th>ارزیابی مستمر</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۰ درصد</td>
<td>آزمون‌های نوشتاری ۲۰ درصد</td>
<td>میان‌نمای ۵۰ درصد</td>
<td>ارزیابی مستمر ۱۰ درصد</td>
</tr>
<tr>
<td>عملاً کرده ۱۰ درصد</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

منابع:
1- Environmental Impact Assessment Of Recycled Wastes on Surface and Ground waters Tarek A. Kassim, Kenneth J. Williamson, Springer,2005
2- Groundwater and Surface Water Pollution, David H.F.Liu, Bela G. Liptak, CRC Press, 1999
3- Contaminant Hydrogeology Waveland Pr Inc; 2 edition, 2008 C.W., Fetter
نام درس: آمار زیست محیطی
نام انگلیسی درس: Statistics for Environmental Engineers

تعداد واحد: ۲
نوع واحد: ۲ واحد نظری
نوع درس: تخصصی انتخابی
پیش‌نیاز: ندارد

آموزش تکمیلی: ندارد

هدف درس: این درس معرفی آمار به مهندسین محیط زیست به عنوان ابزاری حرفه‌ای در تجزیه و تحلیل مسائل زیست محیطی می‌باشد. این درس با معرفی و حل مثال‌هایی مشابه با آنچه مهندسین محیط زیست در کار خود با آن روبرو هستند، مبتنی بر تحلیل و تجزیه و تحلیل اطلاعات به آنها ارائه می‌دهد. در این درس، مهندسین محیط زیست از آشنا شدن با این آماری که این مسائل در جمع اوری و تجزیه و تحلیل اطلاعات به آنها ارائه می‌شود و سپس به مثال‌های مختلفی از کاربرد این روش‌ها در حیطه مسائل محیط زیست پرداخته می‌شود. در این درس، مهندسین محیط زیست از آشنا شدن با این آماری که این مسائل در جمع اوری و تجزیه و تحلیل اطلاعات به آنها ارائه می‌شود و سپس به مثال‌های مختلفی از کاربرد این روش‌ها در حیطه مسائل محیط زیست پرداخته می‌شود.

سر فصل درس: ۲۳ ساعت نظری

۱. نتیجه‌ی آمار در مهندسی محیط زیست
۲. خلاصه‌ی آمار و نمایش داده‌ها
۳. منابع‌های تصادفی و توزیع احتمال
۴. تصمیم‌گیری در مورد نمونه
۵. تصمیم‌گیری در مورد نمونه
۶. آنالیز واریانس
۷. ساخت نمونه‌های تجربی
۸. طرح آزمایش‌های مهندسی
روش ارزیابی:

<table>
<thead>
<tr>
<th>پروژه</th>
<th>آزمون های نهایی</th>
<th>میان ترم</th>
<th>ارزشیابی مستمر</th>
</tr>
</thead>
<tbody>
<tr>
<td>نوشتاری: 20 درصد</td>
<td>70 درصد</td>
<td>-</td>
<td>10 درصد</td>
</tr>
</tbody>
</table>

منابع:

نام فارسی درس: هیدرولوژی پیشرفته
نام انگلیسی درس: Advanced Hydrology
تعداد واحد: ۲
نوع واحد: ۲ واحد نظری و ۰ واحد عملی
نوع درس: تخصصی انتخابی
پیشنهادی: ندارد
آموزش تکمیلی: ندارد
هدف درس: هدف درس، آشنایی با هیدرولوژی، مباحث تکمیلی، نزولات و توزیع و تناوب آنها، سیل و خشکسالی و مدل‌های مورد کاربرد در هیدرولوژی می‌باشد.
سرفصل درس: ۲۲ ساعت نظری و ۰ ساعت عملی
نظری:
- چرخه آب و فرآیندها در هیدرولوژی
- مدل‌سازی هیدرولوژی
- هیدرولیتکتاتولوژی
- بیلان آب
- مدل‌های بارش-رواناب
- روش‌های تخمین حداکثر بارش محتمل و حداکثر سیلاب محتمل
- سیلاب و مطالعات هیدرولوژی مرتبط
- شاخص‌های تعبیر خشکسالی و تحلیل آن

روش ارزیابی

<table>
<thead>
<tr>
<th>کلیدهای نهایی</th>
<th>میان ترم</th>
<th>ارزیابی مسکن</th>
<th>بروره</th>
<th>آزمون های نهایی</th>
<th>آزمون های نوشته‌ای</th>
<th>۵۰ درصد</th>
<th>۲۰ درصد</th>
<th>۱۰ درصد</th>
</tr>
</thead>
<tbody>
<tr>
<td>آزمون های نهایی</td>
<td>میان ترم</td>
<td>ارزیابی مستمر</td>
<td>بروره</td>
<td>آزمون های نوشته‌ای</td>
<td>آزمون های نهایی</td>
<td>۵۰ درصد</td>
<td>۲۰ درصد</td>
<td>۱۰ درصد</td>
</tr>
</tbody>
</table>

منابع:
کارآموزی، م. و عراقی، ن. (۱۳۸۴). هیدرولوژی پیشرفته. دانشگاه صنعتی امیر کبیر.
نام فارسی درس: روش‌های عددی در دینامیک سیالات
Numerical Methods in Fluid Dynamics

تعداد واحد: ۲

نوع واحد: ۳ واحد نظری

نوع درس: تخصصی انتخابی

پیشنهاد: ندارد

آموزش تکمیلی: ندارد

هدف درس: هدف از این درس آشنایی دانشجو با روش‌های عددی حل معادلات دیفرانسیل حاکم بر مسائل مهندسی به خصوص مسائل مرتبط با مهندسی محیط زیست (گراف انتقال آب) می‌باشد. در این درس دانشجو قادر می‌شود انواع معادلات دیفرانسیل کوچک، سهمی و هندسی را با استفاده از روش‌های اجزا محدود، الگوی محدود و حجم محدود حل کند.

سرفصل درس: ۲۲ ساعت نظری

۱. مقدمه (معرفي روش‌های اجزا محدود، الگوی محدود و حجم محدود، شرایط اولیه، شرایط مرزی)
۲. معادلات حاکم (دسته‌بندی معادلات دیفرانسیل حاکم و معرفي معادلات مربوط به منابع آب، مرواری بر روش‌های حل معادلات حاکم)
۳. روش‌های حل شماری (بسط معادلات تفاصلی، حل معادلات دیفرانسیل کوچک، سهمی و هندسی)
۴. روش‌های حل شماری (فرمول بندی و معرفي خط، معرفي توابع شکلی حل مسائل خیاط و غیر شیاط در حال پایدار و غیر)
۵. روش حجم محدود (فرمول بندی، کاربرد در مسائل دو بعدی و سه بعدی)

روش ارزیابی:

<table>
<thead>
<tr>
<th>پروژه</th>
<th>آزمون‌های نهایی</th>
<th>میان‌TERM</th>
<th>ارزیابی مستمر</th>
</tr>
</thead>
<tbody>
<tr>
<td>۲۰ درصد</td>
<td>۷۰ درصد</td>
<td>-</td>
<td>۱۰ درصد</td>
</tr>
</tbody>
</table>

۱۰۷
- Cebeci T., Shao JP., Kafgeke F. And Laurendau E. (2005), Computational Fluid Dynamics for Engineers, Springer.
نام درس: تحلیل و مدیریت ریسک

عنوان درس به انگلیسی: Risk Analysis and Management

تعداد واحد: 2

نوع واحد: نظری

نوع درس: تخصصی انتخابی

پیش نیاز: ندارد

آموزش تکمیلی عملی: ندارد

هدف درس: هدف از این درس آشنایی دانشجویان مهندسی مهیج زیست با روش‌های تحلیل و مدیریت ریسک به صورت احتمالاتی و مشابه در این درس دانشجویان به مفاهیم تحلیل ریسک، مدیریت ریسک و ارتباطات ریسک آشنا می‌شوند و قادر به مدیریت ضمنی مفاهیم ریسک به‌طور عمق خططی و مهارتی در مباحث آب و بحران و بی‌ساختندی محلی منطقه مورد نیاز و حل آنها مقدار ویژه ریسک را بسته‌ای حرکت‌دهنده از خرایی سیستم‌ها بر اساس میزان حمایت و رهایی مقداری هر قطعه‌ها در مواردی عاملی و نحوه، بخش آنها در تخمین تغییرات محل احتمالاتی از موارد مطرح در این درس می‌باشد. معنی‌های ثابت شده های انتقال از ریسک به "مدیریت ریسک" و نحوه تعیین و ربطی بین دو فاکتورهای مهم و حساس از قطعیت‌ها بر ریسک و نحوه مدیریت آنها از سایر مباحث مطرح می‌باشد. در این درس دانشجو ویژه مدیریت مهارتی مدیریت ریسکی را بر اساس میزان حمایت ویژه و ریسک در بیانی مشابه و کاهش ریسک تخمین زده شده به دست می‌آورد و مهارت انتخابات و انتقال نتایج حاصل به‌سایر استفاده‌کنندگان (مهندسین، مدیران و سایر ذینفعان) را کسب نماید.

سرفصل دروس: 2 ساعت نظری

1. مقدمه (تعریف و مفاهیم ریسک، ایمنی و عملکرد، اجزای تحلیل ریسک و کاربرد های آن)
2. روش‌های انجام تحلیل ریسک احتمالاتی (ساختار، ساخت محلی منطقی مورد نیاز، حاصل‌شدن برای تخمین مقدار ریسک)
3. نحوه ارزیابی و اندازه‌گیری آن‌های ارزیابی ریسک
4. تحلیل عوامل
5. شیوه‌های تشخیص عدم قطعیت‌ها و نحوه انتشار آنها در محل ریسک و کاربردی مشارکت‌کننده‌ها در مقدار ریسک
6. شناخت، رتبه ویژه بیشتری مشارکت‌کننده‌ها در مقدار ریسک
7. آنالیز حساسیت و راه‌های محاسبه آن
8. معیارها و سطوح قابل قبول پذیرش ریسک
9. تکنیک‌های تصمیم‌سازی بر اساس اطلاعات ریسک
10. شیوه‌های انتقال آنلاین ارزیابی ریسک به "مدیریت ریسک" و نحوه تعیین و راهبردی فاکتورهای مهم و حساس عدم قفعالیت ها بر ریسک
11. استراتژی‌های کاهش ریسک و شیوه‌های رسمی در تصمیم‌سازی مرتبط با انتخاب استراتژی‌های مدیریت ریسک
12. جنیه‌های اصلی و شیوه‌های انجام "رابطه و مکانیک ریسک" مطالعاتی موردی مرتبط با تحلیل و مدیریت کاهش ریسک در منابع آب
13. روش ارزیابی:

<table>
<thead>
<tr>
<th>برخوته</th>
<th>آزمون‌های نهایی</th>
<th>میان‌ترم</th>
<th>ارزیابی مستمر</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 درصد</td>
<td>نوبت‌نامه: 70 درصد</td>
<td>-</td>
<td>10 درصد</td>
</tr>
</tbody>
</table>

منابع:
نام فارسی درس: مهندسی رودخانه
نام انگلیسی درس: River Engineering
تعداد واحد: ۲
نوع واحد: ۲ واحد نظری
نوع درس: تخصصی انتخابی
پیشنهاد نداده شده
آموزش تکمیلی: نداده
هدف درس: آشنایی با مشخصات رودخانه‌ها و انواع رودخانه‌ها، مکانیک رسواب گذری و جریان آب در رودخانه‌ها. ملاحظات محیط زیستی در طرح‌های احیاء و بارزاسی و ساماندهی رودخانه‌ها

سرفصل درس: سه ساعت نظری

۱. مقدمه، مورفولوژی و تغییرات طبیعی بندی آب‌انباره‌ها و گسترش آب‌انباره‌ها در برقراری تغییرات

۲. انسان‌ساخت و طبیعی

۳. مکانیک رودخانه‌ها و تغییرات در کالبدی و پدیده ریزی و یاباداری کالبدی و مراحل مربوط به

۴. فرسایش و رسواب، مفهوم آستانه حرکت، منحنی متفاوت انتقال اثر، اندرکشت جریان با بستر متحرک، شکل‌های بستر و مقاومت در برقراری جریان.

۵. ارتباط رودخانه‌ها با بستر متحرک از طریق تغییرات سطح بستر و شکل بستر شامل: مهاجرد، و شاخه

۶. حمل رسواب، رسوب‌گذاری در مخلوط آب، کاربرد اکسولوژی میعانات و جانوران و کیفیت آب.

۷. جنبه‌های فیزیکی، شیمیایی و پیوستگی کیفیت آب.

۸. کریدور حیات جانوری و گیاهی رودخانه‌ها، اثرات رسواب بر گیاهان و جانوران، ساماندهی و حفاظت از بافت‌های رسوبی و گیاهان، اکسولوژی، گنبدی، حفاظت و احیاء آب‌انباره‌ها و گسترش آب‌انباره‌ها.

۹. بررسی اثرات طبیعی و انسان‌ساخت در احیاء و بارزاسی رودخانه‌ها.

۱۰. روش‌های انتخابی:

<table>
<thead>
<tr>
<th>پروژه</th>
<th>ارزشیابی های نهایی</th>
<th>سیاست ترم</th>
<th>ارزشیابی متر</th>
<th>منابع</th>
</tr>
</thead>
<tbody>
<tr>
<td>۲۰ درصد</td>
<td>۴۰ درصد</td>
<td>۵ درصد</td>
<td>۱۰ درصد</td>
<td></td>
</tr>
</tbody>
</table>
1- مجیدیان، هانیه. چکیده (تالیف و ترجمه). (1378)، "حفاظت رودخانه‌ها - ویژگی‌های بیوفیزیکی ارزش‌های زیست‌کاری و ضوابط بهره‌برداری." انتشارات سازمان حفاظت محیط زیست، ناشر: دایرة سیس. 2- دستورالعمل ارزیابی زیست محیطی طرح‌های مهندسی رودخانه، (مرحله تفصیلی). تشریح شماره 221-الف، استاندارد وزارت نیرو (1378).

فصل پنجم
فهرست مطالب دروس گرايش
ألودگی هوا
نام فارسی درس: آلودگی هوای محیط‌های بسته و روش‌های کنترل آن

Indoor Air Quality and its Control Techniques

تعداد واحد: ۲ واحد

نوع واحد: ۱ واحد نظری

نوع درس: تخصصی انتخابی

پیشنهاد: ندارد

آموزش تکمیلی: ندارد

هدف درس: در این درس دانشجویان با اهمیت آلودگی‌ها در محیط‌های بسته و تاثیرات ناشی از آن بر سلامت افراد آشنا می‌شوند. مواردی از قبیل آلاینده‌ها و منابع انتشار آنها در محیط‌های بسته، استانداردها، روشهای انتقال آلاینده‌ها به محیط‌های بهبود کیفیت هوای محیط، فناوری‌های بالای‌ش، آلایندگی محیط‌های بسته و ساختارهای بیمار کشی دیگری از اهداف این درس را تشکیل می‌دهند.

سرفصل درس: ۲۲ ساعت - نظری

۱. اهمیت آلودگی‌ها در محیط‌های بسته، مدت زمان حضور آفراد در محیط‌های بسته، آلاینده‌های محیط‌های بسته، منابع انتشار آلاینده‌ها

۲. ویژگی‌ها و تاثیرات ناشی از هر یک از آلاینده‌های محیط‌های بسته، سهم منابع مختلف در تولید یا انتشار

۳. عوامل مؤثر در میزان انتشار آلاینده، تأثیر عوامل جانی در سطح انتشار آلاینده‌های صنعتی

۴. استاندارد و مقادیر مجاز آلاینده‌ها در محیط‌های بسته

۵. مکانیسم‌های تبادل هوا میان محیط‌های بسته و باز، انواع روش‌های تعیین، نرخ نفوذ و نشینی، تأثیر باد بر غلظت آلاینده‌ها، اثر دودکشی

۶. روشهای بهبود کیفیت هوای محیط‌های بسته، فناوری‌های بالای‌ش و تنظیم هوای فناوری‌های بالای‌ش هی، کربن فعال (AC)، الکترو استاتیک، موارد بنفش (UV)، بخار منفلج، نسیم یونی، ازن، فناوری جذب شیمیایی

مقایسه سیستم‌های بالای‌ش

۷. سندرم ساختارهای بیمار (SBS)، عوامل موثر، شناسایی اصولی و سازمان‌یابی ساختارهای بیمار، روش‌های شناسایی و ارزیابی ساختارهای سوکونی/ غیرسکوکی، پروتکسیون‌های بین‌المللی
روش ارزیابی:

<table>
<thead>
<tr>
<th>پروژه</th>
<th>آزمون های نهایی</th>
<th>میان ترم</th>
<th>ارزیابی مستمر</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>آزمون های نوشتری: 25 درصد</td>
<td>-</td>
<td>50 درصد</td>
</tr>
<tr>
<td></td>
<td>عملکرد: 25 درصد</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

منابع:

نام فارسی درس: کنترل انتشار آلاینده‌های گازی منابع ساکن
Gaseous Air Pollutants control from stationary Sources:

تعداد واحد: 2

 نوع واحد: نظری

 نوع درس: تخصصی انتخابی

پیشنهاد: نداد

آموزش تکمیلی: سفر علمی

هدف درس: هدف از این درس آموش و مطالعه مرتب به کنترل آلاینده‌های گازی خاصی از منابع صنعتی به

دانشجویان می‌باشد و در این درس دانشجویان روشهای و اصول فراهم‌کردن مربوط به کنترل آلاینده‌های گازی را

پرداخته و گردند.

سرفصل درس: 32 ساعت نظری

1. مقدمه (صنایع آلوده کننده هوا، فراهم‌کردن احتراق و سیستم شیمیایی)

2. سغازنده‌ها یا پس‌سوزی (اصول و کاربردها، انواع و مکانیسم‌ها، مرگ و مبارزه)

3. کنترل اکسیدهای گوگرد (سیستم‌کارکردها و روشهای مختلف کنترل و غیره)

4. کنترل اکسیدهای نیتروژن (سیستم‌کارکردها و روشهای مختلف کنترل و غیره)

5. کنترل آلاینده‌های ترکیبات الی فرار

6. آلایندهای گازی ناشی از صنایع شیمیایی و غیر شیمیایی و روشهای کنترل آن‌ها توسط آکرولیتیل،

کربن سیاه، کربن فالک، اکسید اتانول، اسید فسفوریک و سولفوریک، صلبوپ و دترژنت، آلاینده‌های ناشی

از صنایع دیوامازی، آلاینده‌های ناشی از صنایع غذایی و کشاورزی، آلاینده‌های ناشی از صنایع متالورژی،

آلاینده‌های ناشی از صنایع تولید مواد معدنی)

روش ارزیابی:

<table>
<thead>
<tr>
<th>پروژه</th>
<th>آزمون‌های نهایی</th>
<th>میان‌ترم</th>
<th>ارزش‌های مستمر</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>آزمون‌های نوشتاری: 20 درصد</td>
<td></td>
<td>25</td>
</tr>
</tbody>
</table>
هدف درس: هدف از این درس آشنایی دانشجویان با مفاهیم آلودگی صوتی و روش‌های کنترل از منابع تولید آلودگی صوتی می‌باشد.

سرفصل درس: ۲۲ ساعت نظری

۱. مفاهیم اساسی صوت (موج و انواع آن، مانند مکانیکی، عرضی، طولی، پیچشی، صوتی؛ نحوه تولید صوت؛ انواع صوت از نظر میکرو الکترومیکی، انواع صوت از نظر شکل امواج؛ انواع صوت از نظر توزیع انرژی).

۲. اندازه‌گیری صوت (کمیت‌های فیزیکی، مانند، توان صوت، شدت صوت، فشار صوت؛ کمیت‌های الکتریکی مانند، تراز و بلندی صوت).

۳. انتشار صوت (انتشار صوت از منابع نقطه‌ای، انتشار صوت از منابع خطی و انتشار صوت از منابع سطحی).

۴. روش‌های اندازه‌گیری و آرزیابی صدا.

۵. اثرات صدا.

۶. کنترل صدا (کنترل در منبع ایجاد صدا، کنترل در مسیر انتشار صوت، حفاظت وردی).

۷. صدا و محیط زیست (انتشار صدا در محیط‌های باز و عوامل موثر بر آن، شاخص‌های توزیع فشار صوت در محیط‌زیست، صدای رفت و آمد، خودروهای شهری و جاده).

روش ارزیابی:

<table>
<thead>
<tr>
<th>پروژه</th>
<th>آزمون‌های های نهایی</th>
<th>میان ترم</th>
<th>ارزیابی مستمر</th>
</tr>
</thead>
<tbody>
<tr>
<td>ظرفیت ۲۵ درصد</td>
<td>ظرفیت ۲۵ درصد</td>
<td>ظرفیت ۲۵ درصد</td>
<td></td>
</tr>
</tbody>
</table>

منابع:

نام فارسی درس: تهویه صنعتی

نام انگلیسی درس: Industrial Ventilation

تعداد واحد: ۲ واحد

نوع واحد: نظری

نوع درس: تخصصی انتخابی

پیشنهاد: ندارد

آموزش تکمیلی: ندارد

هدف درس: آشنایی دانشجویان با روش‌های جمع‌آوری و حمل مواد زائد گازی از داخل کارگاه‌ها و کارخانجات و تحلیل آنها در شرایط مختلف. مهارت باشند که سلامت کارگران تأمین گردد. همچنین در این درس روش‌های مختلف تهویه صنعتی به‌لحاظ محاسبه و طراحی مورد بحث قرار می‌گردد.

سرفصل درس: ۲۲ ساعت نظری

۱. خواص عیاری و شیمیایی هوا
۲. قوانین حاکم بر سیالات (قانون برقی مرجع، تکانه و انرژی)
۳. قوانین ساده شده مکانیک سیالات (قانون برنولی، محاسبه افت فشار)
۴. استانداردهای آلودگی هوا برای کارگاه‌های صنعتی
۵. روش‌های مختلف تهویه و هوازده
۶. انواع کنارها و محاسبات مربوطه
۷. انواع فن‌ها و محاسبات مربوطه
۸. طراحی سیستم‌های تهویه
۹. ملاحظات اقتصادی

روش ارزیابی:

<table>
<thead>
<tr>
<th>پژوهش</th>
<th>آزمون های نهایی</th>
<th>میان ترم</th>
<th>ارزیابی مستمر</th>
</tr>
</thead>
<tbody>
<tr>
<td>۲۰ درصد</td>
<td>آزمون های نوشته ۳۰ درصد</td>
<td>۲۰ درصد</td>
<td>۲۰ درصد</td>
</tr>
<tr>
<td>عملاکی: ۰</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
نام فارسی درس: مدلسازی آلودگی هوای پیشرفته

نام انگلیسی درس: Advanced Air Pollution Modeling

تعداد واحد: ۲ واحد

نوع واحد: نظری

نوع درس: تخصصی انتخابی

پیشنهاد: ندارد

آموزش تکمیلی: ندارد

هدف درس: آشنایی با روش‌های پیشرفته مدلسازی و نوشتن مدل‌های بیشترین آینده‌ها

سرفصل درس: ۲۲ ساعت نظری

۱. مقدمه (معادلات دیفرانسیل معمولی و معادلات دیفرانسیل با مشتق‌های جزئی، تقسیم‌بندی معادلات مشتق‌های جزئی)

۲. ریاضیات تفاصل محدود

۳. روش‌های عددی برای حل معادلات سه‌мерه

۴. روش‌های عددی برای حل معادلات پنجم

۵. روش‌های عددی برای حل معادلات هدایت

۶. حل معادلات برگ خیرالج

۷. حل معادلات برگ لرژ

۸. مختصات قائم (مدل‌های هیدرواستاتیک و غیر هیدرواستاتیک، مختصات ارتفاعی، مختصات فشاری، مختصات فشاری سیگما)

۹. گسترش‌های معادلات حاکم بر جو و آلایندها (شیبکه مدل قائم، گسترش‌های معادله پیوستگی برای هوای گسترش‌های معادله آلاینده‌ها، گسترش‌های معادله انرژی، گسترش‌های معادلات اقیانوسی، گسترش‌های معادله هیدرواستاتیک، ترتیب محاسبات، گام زمانی)

۱۰. مبانی طراحی یک مدل آلودگی هوا

روش ارزیابی:

<table>
<thead>
<tr>
<th>پروژه</th>
<th>آزمون های نهایی</th>
<th>میان ترم</th>
<th>ارزیابی مستمر</th>
</tr>
</thead>
<tbody>
<tr>
<td>۲۰ درصد</td>
<td>۲۵ درصد</td>
<td>۲۰ درصد</td>
<td></td>
</tr>
</tbody>
</table>

نام فارسی درس: مدل‌های تخمین انتشار آلاینده‌ها از منابع متحرک

Mobile Sources Emissions Estimating Models

تعداد واحد: 2 واحد

نوع واحد: 2 واحد نظری

نوع درس: تخصصی انتخابی

پیشینه: ندارد

آموزش تکمیلی: ندارد

هدف درس: دانشجویان در این واحد درسی با اصول و مکانیزم‌های انتشار آلاینده‌های مینا از انواع موتورهای احتراقی داخلی، نحوه اندازه‌گیری و تحلیل انرژی‌های خروجی از اگزوز خودروها و انواع مدل‌های ریاضی متنوع به کار گرفته شده برای تخمین و برآورد ضرایب انتشار مانند محاسبات متحرک آشنا خواهند شد.

سرفصل درس: 32 ساعت - نظری

1. مقدماتی بر مکانیزم‌های انتشار از منابع متحرک
2. روش‌های محاسباتی تخمین ضرایب انتشار در حالت کارکرد در جا
3. روش‌های محاسباتی تخمین ضرایب انتشار در حالت کارکرد زیر بار در آزمایشگاه
4. روش‌های محاسباتی تخمین ضرایب انتشار در حالت کارکرد زیر بار در شرایط واقعی روی جاده
5. استفاده با مدل‌های یک و بی‌بند تخمین و برآورد ضرایب انتشار از خودروهای موتوری با تغییر نوع سوخت

Mobile 6, Street Canyon

و سیکل دیزلی یا اتو از قبیل

روش ارزیابی:

<table>
<thead>
<tr>
<th>پرورش</th>
<th>آزمون های نهایی</th>
<th>میان ترم</th>
<th>ارزیابی مستمر</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>آزمون های نوسانی: 25 درصد</td>
<td>-</td>
<td>50 درصد</td>
</tr>
</tbody>
</table>

منابع:

5. Also a wide variety of latest softwares developed by scientific institutions such as EPA, RICARDO and MIRA.
نام فارسی درس: روش‌های نوین سنجش آلاینده‌ها

New Methods of Air Pollutants Measurements

تعداد واحد: ۲

نوع واحد: بک‌های یک‌تک انتخابی

پیشنهاد: تمرین

آموزش تکمیلی: سفر علمی، آزمایشگاه

هدف درس: هدف اصلی با روش‌کار دستگاه‌های قرائت مستقیم سنجش آلاینده های هوای محیطی و دودکشی، شناخت دستگاه‌ها موجود در بازار و مزایا و معایب هر یک و همچنین آموزش عملی این دستگاه‌ها می‌باشد.

سرفصل درس: ۱۶ ساعت نظری و ۲۴ ساعت عملی

نظری:

۱. استانداردهای آلاینده‌ها در هوا از آزاد
۲. استانداردهای آلاینده‌های خروجی از دودکش‌های متفاوت ثابت
۳. دیالوگ و آموزش نمونه‌برداری از هوا از آزاد و هواخورشیدی در دودکش‌ها
۴. روش‌های نوین نمونه‌برداری و سنجش مستقیم آلاینده‌های نیازی در آزمایشگاه و سطح‌های مکانیکی
۵. روش‌های نوین نمونه‌برداری و سنجش آلاینده‌های خاص و خطرناک (مانند بنزین، آزمایش جیوه و غیره)
۶. استفاده از تیار در ماهواره‌ای در پایش آلاینده‌های هوا

عملی:

۱. معرفی دستگاه‌های نمونه‌برداری و سنجش آلاینده‌های نیازی در محیط و دودکش‌های خروجی از منابع ثابت
۲. نشان دادن کار و دستگاه‌ها و سنجش آلاینده‌های نیازی در محیط و دودکش‌های خروجی از منابع ثابت
۳. نشان دادن کار و دستگاه‌ها و سنجش آلاینده‌های خریزی در محیط و دودکش‌های خروجی از منابع ثابت
۴. نشان دادن انجام نمونه‌برداری و سنجش آلاینده‌های خاص و خطرناک (مانند بنزین، آزمایش جیوه و غیره)

روش ارزیابی:

<table>
<thead>
<tr>
<th>آزمون‌های تکمیلی</th>
<th>میان‌نمی‌متر</th>
<th>ارزیابی مستمر</th>
</tr>
</thead>
<tbody>
<tr>
<td>پورخورا</td>
<td>۲۵ درصد</td>
<td>۲۵ درصد</td>
</tr>
<tr>
<td>آزمون‌های نوشناری</td>
<td>۵ درصد</td>
<td>--</td>
</tr>
</tbody>
</table>

منابع:

Methods of Air Sampling and Analysis, James P. Lodge, 1998.

نام فارسی درس: مدلسازی کیفیت هوا در محیط های بسته

نام انگلیسی درس: Indoor Air Quality Modeling

تعداد واحد: 2 واحد

نوع واحد: 2 واحد نظری

نوع درس: تخصصی انتخابی

پیش‌نیاز: ندارد

آموزش تکمیلی: ندارد

هدف درس: در این درس دانشجویان با مدل‌سازی آلودگی در محیط‌های بسته و انواع مدل‌های تجاري و علمی، سامانه‌های خبره و هوشمند کنترل کیفیت هوا در محیط‌های بسته آشنا می‌شوند.

سرفصل درس: ۲۲ ساعت - نظری

1. مدل سازی کیفیت هوا در محیط‌های بسته
2. مدل گلوس، شرایط مناسب‌گرایی، مدل جمع‌آوری، نرخ میزان آلاینده‌ها
3. مدل‌های تک‌ناحیه‌ای و چند‌ناحیه‌ای
4. مدل IAQX و معادلات مربوطه
5. مدل RISK و معادلات آن
6. مدل CONTAM و معادلات آن، مدل COWZ و ویژگی‌های آن، مدل COMIS
7. معکوف طراحی سامانه درخت و هوشمند مدیریت کیفیت هوا در اماکن بسته با روش کرد مصرف بهینه انرژی

روش‌های ارزیابی:

<table>
<thead>
<tr>
<th>پرورش</th>
<th>آزمون‌های نهایی</th>
<th>مسایل ترم</th>
<th>ارزیابی مسیری</th>
<th>آزمون‌های نوشتاری</th>
<th>۲۵ درصد</th>
<th>۵۰ درصد</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۵ درصد</td>
<td>۲۵ درصد</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

منابع:

نام فارسی درس: کاربرد نانو و بیوتکنولوژی در تصفیه هوای

Application of Nano and Biotechnology in Air Pollution Control:

تعداد واحد: ۲

نوع واحد: نظری

نوع درس: تخصصی انتخابی

پیشنهاد: ندارد

آموزش تکمیلی: سفر علمی

هدف درس: هدف از گذشته این واحد آشنایی با اصول و مبانی علم میکروبیولوژی و نانو، فاکتورهای مؤثر در عملکرد آنها و طراحی این سیستم‌ها جهت کنترل آلاینده‌های هوایی باشد.

سرفصل درس: ۲۲ ساعت نظری

۱. مبانی میکروبیولوژی (سولول، گروه بنده فیلتری، پروکاریوت‌ها، بیوکاریوت‌ها، جذب انرژی، متابولیزم، تصفیه)

۲. اصطلاحات رایج در تصفیه بیولوژیکی

۳. انواع راکتورهای بیولوژیکی (بیفیلتر، صافی چکنده بیولوژیک و گازنیو بیولوژیک)

۴. ساختار سیستم‌های تصفیه بیولوژیکی

۵. فاکتورهای مؤثر در عملکرد سیستم‌های تصفیه بیولوژیکی (دما، اکسیژن، مواد باستر، تلفیج و اکولوژی میکروبی، مواد مغذی، سینتیک رشد و مراحل رشد توده سلولی و جلوگیری از گرفتنی)

۶. طراحی سیستم‌های تصفیه بیولوژیکی

۷. کلیات نانو و سوزاندن کاتالیستی و طبقه بندي کاتالیست‌ها از نظر فیزیکی و شیمیایی

۸. انتخاب راکتور و مدل کلی جریان در راکتور (مدل جریان بسیونی و اختلاف کامل)

۹. انتخاب بستر (بستر ثابت، بستر متغیر و بستر حمل شده)

۱۰. انتخاب کاتالیست مناسب جهت حذف آلاینده‌های هوای

۱۱. عوامل محدود کننده فعالیت کاتالیست

۱۲. انتخاب کاتالیست، سرعت فضایی و دمای بهره برداری

۱۳. طراحی سیستم کنترل کاتالیستی
روش ارزیابی:

<table>
<thead>
<tr>
<th>بروزه</th>
<th>آزمون های نهایی</th>
<th>ميان ترم</th>
<th>ارزشیابی مستمر</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>آزمون های نوشته‌ای: ۵۰ درصد</td>
<td>--</td>
<td>۲۵ درصد</td>
</tr>
</tbody>
</table>

منابع:

نام فارسی درس: انرژی و محیط زیست

Energy and Environment

تعداد واحد: 2 واحد

نوع واحد: 2 واحد نظری

نوع دروس: تخصصی انتخابی

پیشنهاد: ندارد

آموزش تکمیلی: ندارد

هدف درس: دانشجویان در این واحد درسی با انواع مختلف انرژی و طبقه‌بندی‌های مربوطه عضو تجدیدپذیر و تجدیدپذیرنیازهای آشنا می‌شوند. در مرحله بعدی کلیه منابع مصرف انرژی های پاک و تجدیدپذیر با رویکرد زیستمحیطی، اقتصادی و فردی در چهار ها و ایران مورد ارزیابی قرار خواهد گرفت. دانشجویان در پایان ضمین آشنایی با کلیه منابع تجدیدپذیر انرژی قادر به تحلیل معایب و مزایای هر انرژی و انتخاب گزینه بهینه و کاربردی خواهد بود.

سرفصل درس: 32 ساعت - نظری

1- مقدمه (دریافت انرژی، انواع انرژی و طبقه‌بندی‌های مربوطه)

2- معرفی منابع تجدیدپذیر انرژی - زغالسنگ و ارزیابی زیستمحیطی، اقتصادی و تامین انرژی

3- معرفی منابع تجدیدپذیر انرژی - نفت و ارزیابی زیستمحیطی، اقتصادی و تامین انرژی

4- معرفی منابع تجدیدپذیر انرژی - گاز طبیعی و انرژی هسته‌ای، ارزیابی زیستمحیطی، اقتصادی و تامین انرژی

5- معرفی منابع تجدیدپذیر انرژی - خورشید (CSP, Power Tower PV)، ارزیابی زیستمحیطی، اقتصادی و تامین انرژی

6- معرفی منابع تجدیدپذیر انرژی - باد (Onshore, Offshore)، ارزیابی زیستمحیطی، اقتصادی و تامین انرژی

7- معرفی منابع تجدیدپذیر انرژی - برق آبی، ارزیابی زیستمحیطی، اقتصادی و تامین انرژی

8- معرفی منابع تجدیدپذیر انرژی - زیستنورد و بیوگاز، ارزیابی زیستمحیطی، اقتصادی و تامین انرژی

9- معرفی منابع تجدیدپذیر انرژی - آمریکا و اروپا، ارزیابی زیستمحیطی، اقتصادی و تامین انرژی

10- معرفی منابع تجدیدپذیر انرژی - زمین‌مغناطیسی، ارزیابی زیستمحیطی، اقتصادی و تامین انرژی

11- پیش‌سیال ها کشور ایران در توسعه منابع تجدیدپذیر

12- معرفی پروژه‌های انجام‌شده در ایران و جهان در زمینه انرژی

روش ارزیابی:

<table>
<thead>
<tr>
<th>پروژه</th>
<th>آزمون های نهایی</th>
<th>میان ترم</th>
<th>ارزیابی مستمر</th>
</tr>
</thead>
</table>

124
نام فارسی درس: هواپیمازای جوی
نام انگلیسی درس: Atmospheric Aerosols
تعداد واحد: ۲ واحد
نوع واحد: نظری
نوع درس: تخصصی انتخابی
پیشنهاد: ندارد
آموزش تکمیلی: ندارد
هدف درس: در این درس دانشجویان با مبانی و اصول هواپیمازای جوی و دینامیک و حركت ذرات در جو آشنا می‌شوند. یکی از مباحث مشکلاتی موجود در کشور تحت شکن تحت عنوان ریزگرد در این درس مورد توجه قرار می‌گیرند.

سرفصل درس: ۲۲ ساعت-نظری

۱. مقدمه (تاریخ، اندازه، شکل و چگالی ذرات، برخورد هواپیماهای)
۲. خواص گازهای (نظریه سیستمیک گازهای، سرعت مولکولی، مسرع آزاد مانگین، دیگر خواص گازها، عدد ریتوندر، اندازه گیری سرعت، نرخ جریان و فشار گازها)
۳. حرکت یکنواخت ذرات (قانون مقاومت نیوتن، عکس استوکس، سرعت نشست و حركة یادگیری مکانیکی، ضدی)
تصحیح انرژی، ذرات غیر کروی، قطر آب و دینامیکی، نشست در ریتوندرهای بالا، نشست جنبشی
۴. آمار اندازه ذرات (خواص توزیع اندازه، مانگینهای میانی، توزیع مانگینهای میانی، توزیع لگاریتمی نمای، عبارت‌های احتمال لگاریتمی، معادلات تبدیل)
۵. دقیق آماری (شابگیری ذرات، زمان آسایش، شتاب‌گیری ذرات روی خط مستقیم، فاصله توقف، حرکت منحنی خط و عدد استوکس، برخورد ذرات)
۶. نیروهای خاص وارد بر ذرات (چسبندگی ذرات، نیروی براونی، نیروهای گرمی)
۷. لختگی، میعان و تبخیر (لختگی، میعان، تبخیر)
۸. هواپیمازای جوی (هواپیمازای طبیعی زمینه، هواپیمازای شهری، اثرات جهانی)

روش ارزیابی درس:

<table>
<thead>
<tr>
<th>پروژه</th>
<th>آزمون های نهایی</th>
<th>میان ترم</th>
<th>ارزیابی مستمر</th>
</tr>
</thead>
<tbody>
<tr>
<td>۲۰ درصد</td>
<td>۴۰ درصد</td>
<td>۲۰ درصد</td>
<td>۲۰ درصد</td>
</tr>
</tbody>
</table>

نام فارسی درس: ارزیابی ریسک سلامت آلاینده‌های هوایی
Health Risk Assessment of Air Pollutants

تعداد واحد: ۲ واحد

نوع واحد: نظری

نوع درس: تخصصی انتخابی

پیش نیاز: ندارد

آموزش تکمیلی: سمینار

هدف درس: آشنایی با آلاینده‌های خطرناک در هوا، اثرات آلاینده‌ها در بدن، اصول اولیه و روش‌های ارزیابی و مدیریت ریسک آلاینده‌های هوای بارای انسان‌ها

سرفصل درس: ۲۳ ساعت نظری

۱. آشنایی با آلاینده‌های خطر ناک در هوا از قبیل فلزات سنگین، سموم، آزیست، ترکیبات کاره و نیترات، رادیواکتیو و غیره

۲. اثرات بیولوژیکی آلاینده‌های خطرناک هوا در انسان‌ها (از قبیل اثرات بر سیستم تنفسی، سیستم دفاعی، میتوانان یا سرطان‌ها و غیره در بدن انسان)

۳. مقدمه ای بر تعریف ریسک و ارزیابی ریسک

۴. شناسایی خطر، جمع‌آوری اطلاعات، سنگش و ارزیابی شواهد

۵. تخمین رابطه مقدار تماس با واکنش ایجاد شده در انسان‌ها برای آلاینده‌ها در هوا

۶. تخمین مقدار تماس انسان‌ها با آلاینده‌های هوایی در شرایط و انسان‌های مختلف

۷. ارزیابی ریسک برای آلاینده‌های خاص در هوا و تخمین ریسک‌های انسان سرطان‌یا و غیر سرطانی

۸. مدیریت ریسک تخمینی و بکار گیری از تکنولوژی‌های موجود برای کاهش اثرات تخمینی ریسک

روش ارزیابی:

<table>
<thead>
<tr>
<th>پروژه</th>
<th>آزمون های نهایی</th>
<th>میان ترم</th>
<th>ارزیابی مستمر</th>
</tr>
</thead>
<tbody>
<tr>
<td>۴۰ درصد</td>
<td>ارزیابی نیوشتاری: ۴۰ درصد</td>
<td>x</td>
<td>۲۰ درصد</td>
</tr>
</tbody>
</table>
نام فارسی درس: مدیریت مهندسی آلودگی هوا

Air Pollution Engineering Management

تعداد واحد: ۲ واحد

نوع واحد: ۲ واحد نظری

نوع دورس: تخصصی انتخابی

پیش‌نیاز‌ها: ندارد

آموزش تکمیلی: ندارد

هدف درس: در این درس دانشجویان با مفهوم مدیریت مهندسی آلودگی هوا و زیربخش‌های آن آشنا می‌شوند.

سیاست‌های خاص پروکشت آلی‌کش‌ها داده‌های کیفیت هوا، استاندارد‌ها، سیستم‌های پایش آلودگی، شیب‌های سنجش، نحوه استقرار و مکان‌بندی استفاده‌ها، استانداردهای بین‌المللی در جانAccepted Rates و پایش آلودگی هوا در ایران در مکان‌بندی استفاده‌ها، روش‌ها و یکپارچه‌سازی نمونه‌های تدوین هم‌زمان انتشار و بررسی رسانی آنها به‌دست‌آورده‌های این درس را شامل می‌شود. در نهایت دانشجویان با آخرین بخش‌هایی از داده‌های ترافیکی و روش‌های ارزیابی انتشار در این زمینه جروه آشنا خواهند شد و مدل‌های ارزیابی انتشار در بخش میانگین متحرک آموزش داده می‌شود.

سرفصل درس: ۲ ساعت - نظری

۱. طبقه‌بندی در حیطه‌های مدیریت مهندسی آلودگی هوا، داده‌های هوا، پایشآلودگی شامل: کتاب جو زمین، سیستم مدیریت تابوت و میانگین، جو، بارش، تریال انتشار در گاز، عوامل متواری و گازهای مختلط، نمونه‌های مشترک، انواع پایش آلودگی هوا و پایش آلودگی هوا در ایران

۲. داده‌های کیفیت هوا شامل: استانداردهای کیفیت هوا، خطوط راهنمای استانداردهای نیروی زمین، نخست‌مدعی، نیروی زمین، نخست‌مدعی، نیروی زمین، نخست‌مدعی، نیروی زمین، نخست‌مدعی

۳. نمونه‌برداری و سنجش آلودگی‌ها، سیستم مدیریت الکترونیک و ناحیه استقرار استفاده‌های پایش آلودگی هوا در مکان‌بندی

۴. انواع کیفیت هوا، ناحیه استقرار استفاده‌های پایش آلودگی هوا در مکان‌بندی

۵. سیستم‌های مصرفی بندی در شیب‌های سنجش ساکن

۶. ضوابط استفاده‌های سنجش هوای ملی (NAMS)، استفاده‌های سنجش هوای (PAMS) و استفاده‌های سنجش هوای ملی در ایران

۷. تدوین خطوط راهنمای مکان گذاری، ضوابط استقرار استفاده‌های پایش آلودگی هوا در مکان‌بندی
7. داده‌های انتشار، فهرست انتشار، و زمینه‌های فهرست انتشار، منابع مورد ارزیابی، توسه‌های فهرست‌های انتشار,

طراحی فهرست انتشار، روش‌های محاسبه انتشار

8. سیستم پایش بیوسمت (PEMS)، سیستم پایش بیش‌پیش (CEMS)، آزمایش منبع، توزیع جرم، محاسبات مهندسی، مدلهای محاسبه انتشار، ضریب انتشار، انتخاب روش پیشنهادی در تهیه لیست انتشار,

ازبیایی عدم قطعیت، مثال‌های محاسبه ضرایب انتشار

9. تصدیل، به روزرسانی و کنترل فهرست‌های انتشار

10. داده‌های ترافیکی، برآورد میزان انتشار آلاینده‌ها از سیستم حمل و نقل و ترافیک، جمع‌آوری و تحلیل اطلاعات و

داده‌های مورد نیاز برای تحلیل سیستم حمل و نقل و یا برآورد نشر آلاینده‌ها، شکل‌بندی می‌شوند، اطلاعات مربوط به انواع تولید و جذب سفر، مدل‌سازی تغییرات سفر، مدل‌های تولید و جذب سفر، تقسیم‌بندی سفرها، عوامل مؤثر در

تولید و جذب سفر، مدل توزیع سفر، مدل‌های جانبه، مدل تخصصی ترافیک

روش ارزیابی:

<table>
<thead>
<tr>
<th>پرورش</th>
<th>آزمون های نهایی</th>
<th>میان ترم</th>
<th>ارزش‌سنجی مستمر</th>
</tr>
</thead>
<tbody>
<tr>
<td>آزمون های نوشته‌ای: ۲۵ درصد</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>عملکردی: ۲۵ درصد</td>
<td>-</td>
<td>۵۰ درصد</td>
<td></td>
</tr>
</tbody>
</table>

منابع:

1. مجید شفیعی پور و بابک خسروی، انتشارات شهر تهران ۱۳۸۷، مهندسی آلودگی هوا، انتشارات شهر تهران

هدف درس: دانشجویان در این واحد درسی با درک مفاهیم مرتبط به جو زمین، ترکیب گازهای، نحوه افزایش گازهای دما و فلکت ترکیبات جوی در دوران قبیل، اثرات گازهای گلوخانه‌ای و یوزگزی گلخانه‌ای مرتبط. تمادل انرژی در مقداری میانی، پارامترهای حساسیت اقلیمی، دما و نقدهای، مفهوم نیوتن‌سالم گرامیش گلخانه‌ای، ماتوکه کربن، شدت کربنی، شدت انرژی، ستاره‌های انتشار و پیامدهای تغییرات اقلیم آشنا می‌شوند. در هر یک از راهکارهای برجام برنامه تعمیم و تطبیق با پیامدهای تغییرات اقلیم ارائه می‌شود.

سرفصل درس: 22 ساعت - نظری

1. جو اطراف کره زمین و ترکیب آن، ترکیب اولیه جو و روند تغییر آن، لایه‌بندی و پرولایه دماپیگیری دما و سطح زمین در دوران قبیل، اثرات یوزگزی گازهای جو در دوران قبیل، تغییرات دماپیگیری کره زمین
2. پارامترهای موثر در روند تغییرات اقلیمی، مدل دماپیگیری تک میدی، طیف چسبی گازهای، مفهوم و یوزگزی گازهای گلوخانه‌ای
3. تأثیر گازهای گلوخانه‌ای، تمادل انرژی در مقداری جهانی، تمادل انرژی در سطح زمین
4. اثر تشخیصی تغییرات اقلیمی، پارامتر حساسیت اقلیمی، محدوده پارامتر حساسیت اقلیمی
5. مفهوم دما پیگیری و دما تعادلی، اثر تشخیص ناشی از گازهای گلوخانه‌ای مختلف، ارتباط میان اثر تشخیصی و غلظت ترکیبات جوی
6. غلظت دی‌اکسید کربن معادل، پارامتر حساسیت اقلیمی، بررسی روند تغییرات غلظت در برای دما
7. متوسط سطح زمین GWP، (GWP)، عوامل موتور و روند محاسبه Airborne Fraction (AF)
8. چرخه کربن، مفهوم و روند محاسبه، عوامل موثر در جی‌کربن
9. انتشار کربن و دیگر گازهای گلوخانه‌ای از سوخت‌های فسیلی، عملکرد کشورها در انتشار گازهای گلوخانه‌ای، مفاهیم سرانه انتشار، رده‌بندی کشورها در انتشار گازهای گلوخانه‌ای
روش ارزیابی:

<table>
<thead>
<tr>
<th>بروزه</th>
<th>آزمون های نهایی</th>
<th>میان نرم</th>
<th>ارزیابی مستمر</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>آزمون های نوشتاری: 25 درصد</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>عملکردی: 25 درصد</td>
<td>-</td>
<td>50 درصد</td>
<td></td>
</tr>
</tbody>
</table>

منابع:
نام فارسی درس: لایه مرزی جوی
Atmospheric Boundary Layer
تعداد واحد: ۲ واحد
نوع واحد: نظری
نوع درس: تخصصی انتخابی
بهشماری به نام آموزش تکمیلی: ندارد
هدف درس: مباحث عمده آموزشی های در لایه مرزی جو قرار دارند و آموزشها در این مبحث انتشار می‌یابند. دانشجویان در این درس مفاهیم اساسی و بیانگری لایه مرزی جو می‌باشند تا قبل از لایه مرزی جو می‌باشند تا قبل از لایه مرزی جو می‌باشند تا قبل از لایه مرزی جو می‌باشند.
سرفصل درس: ۲ ساعت-نظری
۱-مشاهدات میانگین لایه مرزی جو
۲-مقدمات ریاضی مورد نیاز برای لایه مرزی جو
۳-عدالت حاکم بر لایه مرزی جو
۴-عمدات مثال لایه مرزی جو
۵-اندلس جنبی مثال لایه
۶-روش های پارامتراسی مثال لایه
۷-ساختار لایه مرزی در لایه مرزی جو
۸-نظریه‌شناسی
۹-پیشرفت‌های آموزشی های در لایه مرزی جو
روش ارزیابی:

<table>
<thead>
<tr>
<th>پروژه</th>
<th>آزمون‌های نهایی</th>
<th>معیار ترم</th>
<th>ارزیابی مستمر</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>آزمون‌های نوشتاری: ۲۵ درصد</td>
<td>۴۵ درصد</td>
<td>۲۰ درصد</td>
</tr>
<tr>
<td></td>
<td>عملکرد: ۰ درصد</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

منابع
نام فارسی درس: تدوین و تطبیق با تغییر اقلیم پیشرفتی

Advanced Climate Change Mitigation and Adaptation

تعداد واحد: ۲ واحد

نوع واحد: ۲ واحد نظری

نوع درس: تخصصی انتخابی

پیشنهاد: گردش

آموزش تکمیلی: ندارد

هدف درس: دانشجویان مقطع دکتری در این واحد درسی با برخی روش‌های مهندسی بکار برده شده در جهان مرتبط با کاهش انتشار گازهای گلخانه‌ای و ویژگی‌های مختلف سازگاری با اثرات و پایداری تغییرات اقلیم آشنا می‌شوند. در هر یک از راهکارها برنامه و تطبیق از منظر امکان طراحی و تکنولوژی در محیطهای گوناگون برای اجرا ارائه می‌شود.

سرفصل درس: ۲۲ ساعت - نظری

۱. روشهای جمع اوری گازهای همراه در صنایع پالایشگاهی (Cold & Hot Flares)

۲. جداسازی دی اکسید کربن از گازهای خروجی دوکشتهای پالایشگاهی، مجتمع‌های پتروشیمی و نیروگاه‌ها (Carbon Sequestration Techniques)

۳. روشهای جمع اوری گازهای همراه در مجتمع‌های پتروشیمی (Cold & Hot Flares)

۴. روشهای ذخیره سازی گازهای گلخانه‌ای در محیط‌هایی جون: Salt Caverns, Oil & Gas Depleted

۵. طراحی و هزینه‌سازی (Carbon Capture and Storage, CCS)

۶. روشهای سازگاری در یک‌پالایشی کشوری، اب، گرم شدن زمین و بهداشت

۷. طراحی روشهای نوین سازگاری و تطبیق با دیگر پایامدهای تغییرات اقلیم

روش ارزیابی:

<table>
<thead>
<tr>
<th>پروژه</th>
<th>آزمون‌های نهایی</th>
<th>میان‌ترم</th>
<th>ارزیابی مستمر</th>
</tr>
</thead>
<tbody>
<tr>
<td>آزمون‌های نهایی: ۲۵ درصد</td>
<td></td>
<td></td>
<td>۵۰ درصد</td>
</tr>
<tr>
<td>عملکردی: ۲۵ درصد</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1- Climate Change and Adaptation, Edited by Leary, N., Adejuwon, J., First published by Earthscan in the UK and USA in 2008.

4- Climate Change: The Science, Impacts and Solutions, A. BARRIE PITTOCK, 2009.

5- Newly Published Articles in renowned Scientific and Engineering Journals 2013 onward.
نام فارسی درس: کاربرد مدل‌های انرژی در محیط زیست

Application of Energy Models in Environment

تعداد واحد: 2 واحد
نوع واحد: 2 واحد نظری
نوع درس: تخصصی انتخابی
پیشنهاد: ندارد

آموزش تکمیلی: ندارد

هدف درس: دانشجویان در این واحد درسی با انجام مختلف مدل‌های کاربردی در زمینه انرژی و طبیعت‌های مربوطه اعم از تجدیدپذیر و تجدیدناپذیر آشنا شده و با چگونگی اصول حاکم بر روابط ریاضی تخمینی انتشار انرژی در این دو دسته آن را بیشتر کنار خواهد کرد. در مرحله بعدی کلیه مباحث مربوط به انرژی در زمینه‌های گردشگری و تجدیدپذیر با رویکرد زیست‌محیطی، اقتصادی و فناوری در جهان و ایران مورد ارزیابی قرار خواهد گرفت. دانشجویان در بیان پتاسیم آن را با تعدادی حداقل 3 مدل و نرم‌افزار قادر به تحلیل مسائل و مزایا در انرژی و انتخاب آن را بهبود و کاربردی خواهد بود.

سروصد درس: 33 ساعت - نظری

1. مقدمه‌ای بر مدل‌های زیست‌محیطی در زمینه انرژی و پیامدهای آن بر محیط زیست

برای مثال توجه تجدید پذیر انرژی-

- Proform, Proform Global Warming

- RETScreen

- SimPact

- Screen

- TANKS

5. معرفی و درک با مدل‌های برآورد تبیخ از انواع مکانی حامل سوختی مانند زیست‌محیطی، اقتصادی و تامین انرژی

روش ارزیابی:

| بروزه | ارزیابی مسأله | میزان ترم | آزمون های نهایی | آزمون های نشانه‌گیری
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>25 درصد</td>
<td>25 درصد</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4. Environmental Energy Applied Models such as Proform, RETScreen, SimPacts, Screen and TANKS work manuals, 2009-2013,
5. Latest Published Articles in Renowned Scientific, Engineering and Energy Journals 2013 onward.
نام فارسی درس: طراحی شبکه‌های پایش آلودگی هوا

Air Quality Monitoring Network Design

نام انگلیسی درس: تعداد واحد: ۲
نوع واحد: نظری
نوع درس: تخصصی انتخابی
پیشنهاد ندارد
آموزش تکمیلی: سفر علمی

هدف درس: در این درس دانشجویان با اصول و استانداردهای شبکه پایش آلودگی هوا، شامل آلودگی‌های اصلی
و سایر آلودگی‌ها آشنا می‌شوند و می‌توانند این نوع شبکه‌ها را طراحی نمایند.

سرفصل درس: ۲۲ ساعت نظری

۱. هدف مطالعه
۲. انواع شبکه پایش کیفیت هوا
۳. انتخاب محل مناسب جهت نصب ایستگاه‌های شبکه پایش کیفیت هوا
۴. کاربرد طراحی شبکه پایش کیفیت هوا جهت جنگ آلودگی در مناطق شهری
۵. توسعه و طراحی شبکه پایش کیفیت هوا جهت پیش بینی از ازکید نیتروژن
۶. پایش فضایی کیفیت هوا با استفاده از تیم‌های شناسایی

روش ارزیابی:

<table>
<thead>
<tr>
<th>ارزیابی مستمر</th>
<th>نوع هوا نهایی</th>
<th>پروژه</th>
</tr>
</thead>
<tbody>
<tr>
<td>آزمون های نهایی</td>
<td>۲۵</td>
<td>میان ترم</td>
</tr>
<tr>
<td>آزمون های نوشته‌ای: ۵۰ درصد</td>
<td>۲۵</td>
<td></td>
</tr>
</tbody>
</table>

منابع:

نام فارسی درس: اطلاعات جغرافیایی و سنگش از راه دور در آلودگی هوا
Gis and Remote Sensing in Air Pollution

تعداد واحد: ۲
نوع واحد: نظری
نوع درس: تخصصی انتخابی
پیشنهاد تجدید
آموزش تکمیلی: سفر علمی

هدف درس: هدف آشنایی با مبانی و مفاهیم سامانه اطلاعات جغرافیایی و سنگش از دور و روش کار با آنها و ارائه نمونه‌های کاربردی در آلودگی هوا می‌باشد.

سرفصل درس: ۳۲ ساعت نظری

۱. مبانی سامانه اطلاعات جغرافیایی و سنگش از دور
۲. مبانی سامانه اطلاعات جغرافیایی و سنگش از دور
۳. مدل‌های مفهومی و منطقی
۴. مرحله ایجاد و بهبود سامانه اطلاعات جغرافیایی و سنگش از دور
۵. ساختار داده‌ها در مبانی سامانه اطلاعات جغرافیایی و سنگش از دور
۶. مدل‌سازی دنباله‌ای واقعی در سامانه اطلاعات جغرافیایی
۷. ارتباط بازخورد اطلاعاتی و طبقه‌بندی سامانه‌های اطلاعاتی
۸. روش واریانس و کیفیت و دقت داده ها
۹. کاربرد سامانه اطلاعات جغرافیایی در آلودگی هوا و ارائه نمونه‌های کاربردی
۱۰. کاربرد سنگش از راه دور در آلودگی هوا و ارائه نمونه‌های کاربردی

روش ارزیابی:

<table>
<thead>
<tr>
<th>ارزیابی مستمر</th>
<th>میان ترم</th>
<th>آزمون‌های نهایی</th>
<th>بورزه</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰۵</td>
<td>۵۰ درصد</td>
<td>۲۵</td>
<td>۲۵</td>
</tr>
</tbody>
</table>

۱۴۵
منابع:
1. منجش از دور (اصول و کاربرد) - حسن علیزاده رییسی، انتشارات سمت، منجش از راه دور و سیستم اطلاعات چندفاحی، کریستوفر، ترجمه فرید مر، مجید هاشمی تنگستانی، مرکز نشر دانشگاهی، 1382.
نام فارسی درس: شیمی جو
نام انگلیسی درس: Atmospheric Chemistry
تعداد واحد: ۲
نوع واحد: نظری
نوع درس: تخصصی انتخابی
پیش‌نیاز: ندارد
آموزش تکمیلی: سفر علمی
هدف درس: هدف آشنایی با تغییرات شیمیایی انواع آلاینده هالیدوکربن ها، اکسیدهای نیتروژن، اکسید‌گوگرد، متوکسیدکربن و غیره و واکنش‌های پیگیری سرنشین‌های آلاینده ها در اتمسفر می‌باشد.
سرفصل درس: ۲۲ ساعت نظری
۱. انواع تغییرات شیمیایی اتمسفر
۲. نقش اشعه خورشید در شیمی اتمسفر
۳. مسیرهای واکنش شیمیایی فاز گازی
۴. انواع واکنش هوای انجام شده و حذف آلاینده ها از اتمسفر
۵. واکنش‌های فتوشیمیایی (سینتیک و واکنش‌های فتوشیمیایی)
۶. تأثیر خورشید و واکنش‌های فتوشیمیایی
۷. شیمی استراتوسفر
۸. شیمی تروپوسفر (ادیکال های هیدروکسیل، جرخه متان، فرمالدئید، هیدروکربن و هیدروژن)
۹. ازن در تروپوسفر (واکنش‌های ازن، حداقل مقدار ازن، واکنش‌های فتوشیمیایی و وقایع ازن)
۱۰. هیدروکربن‌ها و مکانیسم عمل آنها در واکنش‌های فتوشیمیایی
۱۱. ترکیبات نیتروژن و گوگرد در اتمسفر و واکنش‌ها طول عمر و سرنشین‌های آلاینده

روش ارزیابی:

<table>
<thead>
<tr>
<th>بروزه</th>
<th>آزمون‌های نهایی</th>
<th>بیان‌ترم</th>
<th>ارزیابی مستمر</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>۲۵</td>
</tr>
<tr>
<td>درصد</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
نام فارسی درس: اقتصاد انرژی و آلودگی هوا

نام انگلیسی درس: Energy Economy and Air Pollution

تعداد واحد: ۲ واحد

نوع واحد: ۲ واحد نظری

نوع درس: تخصصی انتخابی

پیشنهاد: ندارد

آموزش تکمیلی: ندارد

هدف درس: دانشجویان در این واحد درسی ضمن آشنایی با جنبه‌های اقتصادی تولید انرژی و انتشار آلاینده قادراً به تحلیل صدای اقتصادی ناشی از مشکلات زیست محیطی خواهد پرداخت. اثرات زیست محیطی مربوط به بخش انرژی (اهمیت پوشش گیری، کنترل و ..) ضمن آنکه سهم عمده‌ای را به خود اختصاص می‌دهد، سهم فعالیت‌های در سرمایه‌گذاری‌های کلی، هزینه‌های عملکردی و قیمت انرژی تولیدی خواهد داشت.

سرفصل درس: ۲۲ ساعت - نظری

۱. روند فعالیت‌های زیست‌محیطی در بخش انرژی
۲. اثرات اقتصادی صدمات زیست‌محیطی ناشی از فعالیت‌های انرژی
۳. کنترل‌های زیست‌محیطی در بخش انرژی و پیامدهای اقتصادی
۴. ارتباط گذاری آلودگی هوا در حوزه تولید انرژی
۵. تعیین خط مشی بهره‌برداری از منابع انرژی با روش‌های محیط‌پزشکی و اقلیم
۶. چهارچوب تصمیم‌گیری در حوزه اقتصاد سبز

روش ارزیابی:

<table>
<thead>
<tr>
<th>پروژه</th>
<th>آزمون‌های نهایی</th>
<th>مبنا ترم</th>
<th>ارزیابی مستمر</th>
<th>گامدست</th>
<th>۵۰ درصد</th>
</tr>
</thead>
<tbody>
<tr>
<td>آزمون‌های نهایی: ۳۵ درصد</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>عملکردی: ۲۵ درصد</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

فصل ششم
فهرست مطالب دروس گرامیش
مواد زائد جامد
نام فارسی درس: تبدیل پسماند به انرژی
نام انگلیسی درس: Waste To Energy
تعداد واحد: ۲ واحد
نوع واحد: ۱ واحد نظری و ۱ واحد عملی
نوع درس: تخصصی انتخابی
پیشنهاد نداده
آموزش تکمیلی: سفر علمی و سمینار
هدف درس: آشنایی دانشجویان با تکنولوژی های تبدیل پسماند به انرژی
سرفصل درس: ۱۶ ساعت نظری و ۳۲ ساعت عملی
نظری
۱- بازیافت و تبدیل مواد و انرژی

- پردازش مواد و سیستم‌های بازیافت
- بازیافت مواد از طریق تبدیل شیمیایی
- بازیافت و تبدیل بیولوژیکی مواد
- بازیافت انرژی از مواد قابل تبدیل

- نمودارهای سیستم‌های بازیافت مواد و انرژی

۲- فراورده تولید

RDF

- RDF
- مزايا و معاون
- اهمیت زیست‌محیطی – اقتصادی
- RDF
- واحدهای عملیاتی در فراورده تولید
RDF
- فراورده تصفیه مکانیکی - بیولوژیکی (MBT) تولید
- کاربرد در صنایع
2- بازیافت گاز خاکیال
- فواید زیستمحیطی و اقتصادی
- تولید انرژی
- مراحل اجرای پروژه استحصال گاز خاکیال
- غربالگری، تخمین گاز قابل استحصال، طراحی، اجرای و بهره‌برداری
4- بیوگاز
عملی
- کار میدانی و مطالعه مورد
- بازدید
روش ارزیابی:

<table>
<thead>
<tr>
<th>ارزیابی مستمر</th>
<th>آزمون های نهایی</th>
<th>میان ترم</th>
<th>بررسی</th>
</tr>
</thead>
<tbody>
<tr>
<td>آزمون های نهایی</td>
<td>80 درصد</td>
<td>0 درصد</td>
<td>20 درصد</td>
</tr>
<tr>
<td>عملکردی</td>
<td>0 درصد</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

منابع:
- عبدالله، محمد علی، بیوگاز، سازمان انرژی انیمی ایران، 1364
- عبدالله، محمد علی، مدیریت مواد زائد جامد، جلد دوم، سازمان بازیافت و تبدیل مواد، شهرداری تهران، 1371
- کرباسی عبدالله رضا، رحیمی نسترن، عبدالله محمدعلی و همکاران. انرژی و محیط زیست، وزارت نیرو، 1376
- عبدالله محمدعلی، بازیکی مرح، پانزدهم و هفتمی تولید انرژی از زیست توده در مناطق روستایی، وزارت کشور، 1391
- عبدالله محمدعلی، صدیقیان سپاهی، امیری. خاکیال مهندسی پسماند، انتشارات دانشگاه تهران، چاپ دوم، 1394
- W. A. Worrell, P. A. Vesilind (2010), Solid Waste Engineering
نام فارسی درس: لاکنها در خاک‌الابل

Landfill liners: درس

تعداد واحد: 2

نوع واحد: نظری

نوع درس: تخصصی انتخابی

پیشیاز: ندارد

آموشت تکمیلی: ندارد

هدف درس: هدف درس آشنایی دانشجویان با انواع لاکنها، طراحی لاکن‌های رسی و زئوسنتیک‌ها، پارامترهای طراحی، ساخت لایه‌های رسی، سازگاری زئوسنتیک‌ها با محیط اطراف، آزمایش‌های مرتبط با لاکن‌ها و زئوسنتیک‌ها و مسائل مرتبط با کاربرد آنها می‌باشد.

سرفصل درس: 22 ساعت نظری

- پارامترهای موثر در تراکم خاک‌های رسی و مورد استفاده در لاکن‌ها
- زئوسنتیک‌ها (انواع، خصوصیات، مقاومت اتصال، مقاومت در مقابل اشعه ماورای بنفش، نحوه اجرای لاکن‌های رسی زئوسنتیک‌ها)
- طراحی لاکن‌های رسی زئوسنتیک‌ها (انواع، نوع استفاده، خصوصیات مواد، آزمایش‌ها)
- تاثیر ترکیبات شیمیایی بر نفوذ بذیری لاکن‌های رسی
- لاکن‌های رسی مترکم شده با نفوذ بذیری پایین‌تر (متزیگات تراکم، نفوذ بذیری، مواد لاکن‌ها، روش‌های ساخت و مشکلات ناشی از آن، کنترل ساخت و تضمین کیفی)
- مفاهیم انتقال آلاینده‌های دارای لاکن‌ها با استفاده از روابط ریاضی
- زئوسنتیک‌ها (انواع، خصوصیات حساسیت به ترکیبات آلی و بخاری درجه حرارت، تنش‌های محیطی و گسترش)

- اجرای زئوسنتیک‌ها در محلفز آزمایش‌ها و تعمیرات
- استفاده از زئوسنتیک‌ها در جاده‌سازی، کشوارزی، زیبا سازی ترافیک‌های تری شیپ، خاک‌برداری، هاف و سایر امور عمرانی

155
روش ارزیابی:

<table>
<thead>
<tr>
<th>برآورد</th>
<th>آزمون های نهایی</th>
<th>میان طرم</th>
<th>ارزیابی مستمر</th>
</tr>
</thead>
<tbody>
<tr>
<td>۳۰ درصد</td>
<td>آزمون های نوشتاری: ۵ درصد</td>
<td>۱۰ درصد</td>
<td>۱۰ درصد</td>
</tr>
</tbody>
</table>

منابع:

نام فارسی درس: مدلسازی در مدیریت پسماند

نام انگلیسی درس: Modeling in waste management

تعداد واحد: ۲

نوع واحد: نظری

نوع درس: تخصصی انتخابی

پیش‌نیاز: ندارد

آموزش تکمیلی: سفر علمی، کارگاه، آزمایشگاه و سمینار

هدف درس: آشنایی با مدل‌های تولید، ضرایب ریزش، مدل‌های تولید شهری‌های دارای مدل‌های پسماند، هم‌اکنون و آینده‌ای در محیط‌های منشأهای اشباع و غیر اشباع، آشنایی با قانون افزایش مربوط، مقدمه‌ای بر ارزیابی چرخه حیات در مدیریت پسماند و قانون افزایش مربوط

سرفصل درس: ۲۰ ساعت نظری

۱- آشنایی با مبانی و مدل‌های تولید شهری‌های دارای محله‌های پسماند

۲- آشنایی با مبانی و مدل‌های تولید گاز در محله‌های دفن پسماند

۳- آشنایی با مبانی و مدل‌های انتقال آلاینده‌ها در محیط منشأهای اشباع و غیر اشباع نظیر لاپیرهای محل دفن

Natural Attenuation

۴- آشنایی با مبانی

۵- آشنایی با مبانی و مدل‌های ارزیابی چرخه حیات در مدیریت پسماند

- قانون افزایش مورد آموزش عبارتند از (نسخه‌های جدید و بروز شده)

Hydrological Evaluation of Landfill Performance (HELP)

- LandGem (along with the landfill gas models developed by US EPA)

- Industrial Waste Management Evaluation Model (IWEM)

- Integrated Waste Management (IWM)

- Hydrus-1D

- Pollute 7

- WARM

روش ارزیابی:
نام فارسی درس: زیست محیطی
نام انگلیسی درس: Environmental Geotechnology
تعداد واحد: 2
نوع واحد: نظری
نوع درس: تخصصی انتخابی
پیشنهاد: تدریس
آموزش تکمیلی: تدریس
هدف درس: آشنایی دانشجویان با محیط‌های کشاورزی، واکنش‌های موجود در هوا، جریان آب و حرکت آب‌های خاک در خاک، ساختمان‌های آلودگی و نحوه انتقال آلودگی به محیط‌های اطراف، روش‌های موجود برای پایش خاک، و جلوگیری از انتشار آلودگی در خاک می‌باشد

سرفصل درس: تخصصی انتخابی
- ساختار و شکل‌گیری از آزمایشگاهی و پایین
- تحلیل‌های حرکت آلودگی‌ها
- دیواره‌های دوگانه و پردیده‌های تزریق
- منابع آلودگی‌های خاکی و جامد سازی نمودهای خاکی
- روش‌های نمودهای برداری از محیط‌های آلوده خاکی
- موادآلی و شیمی آزمایشگاهی

بدبیده جذب و ایزوپوره‌های خلیل، وارگموبر، و فرودلح

مسائل محاسبه جهت انتقال آلودگی‌ها در محیط‌های اشتباع
- فراخوان آلوده‌های آلوده‌های انتقال آلودگی‌ها از طریق بلع، نوشیدنی بدن، تنفس، گرد و غبار
- تحلیل سطوح پالایش برای آلودگی‌ها در خاک در محیط‌های صنعتی، تجاری، و مسکونی

روش ارزیابی:

<table>
<thead>
<tr>
<th>پروژه</th>
<th>آزمون‌های ترم</th>
<th>میان ترم</th>
<th>ارزیابی مستمر</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 دارد</td>
<td>10 دارد</td>
<td>10 دارد</td>
<td></td>
</tr>
</tbody>
</table>

نام فارسی درس: پردازش زیستی پسماند

نام انگلیسی درس: Biological Treatment of Solid Waste

تعداد واحد: ۲

نوع واحد: نظری

نوع درس: تخصصی انتخابی

پیش‌نیاز: ندارد

آموزش تکمیلی: سفر علمی

هدف درس: آشنایی دانشجویان با فرآیندهای بیولوژیکی هوازی و به هوازی تجزیه باشی که پسماندهای شهری، پسماندهای خطرناک، لجن‌های تصفیه آب و فاضلاب شهری و صنعتی

سربلیست درس: ۲۲ ساعت نظری

- جایگاه پردازش زیستی پسماند در مدیریت پسماند
- موانع تجزیه بیولوژیکی، عوامل محیطی موثر بر رشد
- سیستم واکنش‌های تجزیه بیولوژیکی
- آشنایی با فرآیندهای پردازش زیستی پسماند شامل کمبوست، هضم بی‌هوایی، ورم کمبوست برای پسماند شهری و انواع لجن فاضلاب
- آشنایی با مبانی برنامه‌ریزی پردازش زیستی پسماند
- آشنایی با مبانی طراحی پردازش زیستی پسماند
- آشنایی با کاربرد‌های محصولات پردازش زیستی و بازار فصول
- آشنایی با قوانین، استانداردها و شیوه‌کاری کیفیت محصولات پردازش زیستی پسماند

روش ارزیابی:

<table>
<thead>
<tr>
<th>پروژه</th>
<th>آزمون‌های نهایی</th>
<th>میان‌TERM</th>
<th>ارزیابی مستمر</th>
</tr>
</thead>
<tbody>
<tr>
<td>۴۰ درصد</td>
<td>۵۰ درصد</td>
<td>۱۰ درصد</td>
<td>۰ درصد</td>
</tr>
</tbody>
</table>
- Epstein E., 2011, Industrial composting; Environmental Engineering and facilities management, CRC Press
- US EPA, 2004, Composting yard trimmings and solid waste, EPA530-R-94-003
نام فارسی درس: ارزیابی چرخه حیات در مدیریت پسماند

Life Cycle Assessment in waste management:

تعداد واحد: ۲

 نوع واحد: نظری

 نوع درس: تخصصی انتخابی

پیشنهاد: ندارد

آموزش تکمیلی: ندارد

هدف درس: آشنایی دانشجویان با مفاهیم پایه ارزیابی چرخه حیات و کاربرد آن در برنامه ریزی سیستم‌های مدیریت پسماند شهری و منطقی، شناخت روش‌های فهرست توصیه‌ای آنلاین‌های منتشره از اجزاء سیستم مدیریت پسماند Integrated Waste management (IWM)

آشنایی با روش‌های بندی آنلاین‌های منتشره به اکثر و تفسیر آنها و نیز آشنایی با مدل‌های جوون

سرفصل درس: ۲۲ ساعت نظری

۱- تحلیل سیستم‌های مدیریت بازارچه پسماند
۲- آشنایی با منشی‌های سازی اجزاء مدیریت پسماند
۳- آشنایی با ویژگی‌های ارزیابی چرخه حیات
۴- آشنایی با مباحث و روش‌های براورده کمیت و کیفیت آنلاین‌های منتشره از اجزاء مدیریت پسماند
۵- آشنایی با روش‌های ارزیابی اثرات
۶- آشنایی با مدل‌های موجود ارزیابی چرخه حیات در مدیریت پسماند

۰ نرم افزارهای مورد استفاده ت亁 (سخن‌های جدید و بروز شده)

Integrated Waste Management (IWM)

- IWM - LCA
- Umberto
- SimpaPro

روش ارزیابی:

<table>
<thead>
<tr>
<th>پرسو</th>
<th>آزمون‌های نهایی</th>
<th>میان‌ترم</th>
<th>ارزیابی مستمر</th>
</tr>
</thead>
<tbody>
<tr>
<td>۵۰ دینه</td>
<td>۳۰ دینه</td>
<td>۱۰ دینه</td>
<td></td>
</tr>
</tbody>
</table>
نام فارسی درس: زمین شناسی زیست محیطی
نام انگلیسی درس: Environmental Geology
تعداد واحد: ۲
نوع واحد: نظری
نوع درس: تخصصی انتخابی
پیش نیاز: ندارد
آموزش تکمیلی عملی: ندارد

هدف درس: آشنایی دانشجویان با مفهوم زمین شناسی زیست محیطی، ساختار مواد زمینی و نگرشی بر سنگها و کانی‌ها، زمین‌نوردی و عالی‌ها ای انشعابات و اثرات آن بر محیط زیست، و همچنین اثر متقابل و اکتشاف سنگ‌ها و خاک با ایفای سطحی و زیر زمینی، ایجاد سیل و مناطق سیلابی، محیط حالی ساحلی و علل تغییرات در سواحل، تغییرات آب و هوا و زمین شناسی محلاتهای دفن و الودگی‌های حاصل از استخراج مواد معدنی و نفت می‌باشد.

سربلی درس: ۲۲ ساعت نظری

- مفهوم زمین شناسی زیست محیطی و روابط انسان و زمین,
- ساختار مواد زمینی و نگرشی بر سنگها و کانی‌ها,
- زمین‌نوردی و عالی‌ها و اثرات آن بر محیط زیست,
- حرکت مواد در زمین شامل زمین‌نوردی و الودگی,
- نشست زمین,
- زمین شناسی حوضه‌های ابریز و اثر متقابل واکنش سنگ‌ها و خاک با ایفای سطحی و زیر زمینی,
- ایجاد سیل و مناطق سیلابی,
- محیط حالی ساحلی و علل تغییرات در سواحل,
- تغییرات آب و هوا و
- زمین شناسی محلاتهای دفن و الودگی‌های حاصل از استخراج مواد معدنی و نفت.
روش ارزیابی:

<table>
<thead>
<tr>
<th>پروژه</th>
<th>الگویی نهایی</th>
<th>میزان ترم</th>
<th>ارزیابی مسیری</th>
<th>الگویی نهایی نوشتاری</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 درصد</td>
<td>20 درصد</td>
<td>10 درصد</td>
<td>100 درصد</td>
<td>20 درصد</td>
</tr>
</tbody>
</table>

منابع:

1- فریدون غضبان، زمین شناسی زیست محیطی، انتشارات دانشگاه تهران.
2- Enviromental Geology, Edward Keller (2006)
نام فارسی درس: جمع آوری و حمل و نقل پسماند
نام انگلیسی درس: Waste collection and transport
تعداد واحد: ۲ واحد
 نوع واحد: ۱ واحد نظری و ۱ واحد عملی
 نوع درس: تخصصی انتخابی
پیشنهاد: ندارد
آموزش تکمیلی: سفر علمی و سمینار
هدف درس: آشنایی دانشجویان با اصول جمع آوری و حمل و نقل پسماند

سرفصل درس: ۱۶ ساعت نظری و ۲۳ ساعت عملی (۴۸ ساعت)

نظری
- سرویس های جمع آوری
- آنالیز سیستم های جمع آوری
- مسیرهای جمع آوری
- تکنیک های بیشتره آنالیز
- ضرورت عملیات انتقال
- استفاده های انتقال
- روش ها و وسایل انتقال

عملی
- طراحی سیستم جمع آوری، کار میدانی و مطالعه موردی
- بازدید

روش ارزیابی:

<table>
<thead>
<tr>
<th>بروزه</th>
<th>آزمون های نهایی</th>
<th>میان ترم</th>
<th>ارزیابی متمرکز</th>
</tr>
</thead>
<tbody>
<tr>
<td>۴۰ دصد</td>
<td>آزمون های نوشتاری: ۲۰ دصد</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>عملکردی: ۲۰ دصد</td>
<td>۱۰ دصد</td>
<td></td>
</tr>
</tbody>
</table>
منابع:

- عبدال кл. محمد علی، مدیریت مواد زائد شهری، سازمان بازیافت و تبدیل مواد، شهرداری تهران (۱۳۷۳)

- عبدالعلی محمدعلی، مدیریت دفع و بازیافت مواد زائد جامد شهری در ایران، سازمان شهرداریهای کشور، ۱۳۷۹

- عبدالعلی محمدعلی، دفع و بازیافت مواد زائد جامد شهری در جهان، سازمان شهرداریهای کشور، ۱۳۷۹

- عبدالعلی محمد علی، بازیافت مواد زائد جامد شهری، مرکز انتشارات دانشگاه تهران - چابهار، ۱۳۹۲

- عبدالعلی محمدعلی، سمیعی فرد رضا، حسینی حامد، مدیریت پسماند روستایی، وزارت کشور، ۱۳۹۱

- UN-Habitat (2010). Solid Waste Management in the World’s Cities, WATER AND SANITATION IN THE WORLD’S CITIES.

- Franchetti, Matthew J. (2009), Solid waste analysis and minimization : a systems approach, McGraw-Hill Companies, Inc.

نام فارسی درس: بهداشت، ایمنی و محیط زیست در مدیریت پسماند
Health, Safety and Environment in Waste Management

تعداد واحد: 2
نوع واحد: 2 واحد نظری
نوع درس: تخصصی انتخابی
پیش‌نیاز: ندارد
آموزش تکمیلی: ندارد

هدف درس: آشنایی با مهارت‌های مدیریت و برنامه‌ریزی بهداشت، ایمنی و محیط زیست در عرصه‌های مختلف و ایجاد بستری مناسب جهت استقرار و اجرای استانداردهای مدیریت محیط زیستی

سرفصل درس: ۲۲ ساعت نظیر

• تعریف کلیات و اصول بهداشت، ایمنی و حفاظت از محیط زیست

• مشکلات و جالش‌های بهداشتی عمومی‌های ناشی از مدیریت نامناسب و غیر اصولی پسماند (despre یک درمانی که از آن اعضا استفاده می‌شود، تولید بیماری‌ها و تکش‌ها و جریان‌ها و...)

• مشکلات و جالش‌های مربوط به همکاری عمومی‌های ناشی از مدیریت نامناسب و غیر اصولی پسماند (آموزشی)

• مباحث وب، آلودگی خاک، آلودگی هوا و...

• اصول بهداشت و ایمنی ظروف و روش‌های ذخیره شده مواد پسماند در زیر نام بیرون

• اصول ایمنی و بهداشت در تاسیسات تحقیک

• اصول ایمنی و بهداشت در جمع آوری و حمل و نقل پسماند

• اصول ایمنی و بهداشت و محیط زیست در ایستگاه‌های انتقال مواد

• اصول ایمنی و بهداشت و محیط زیست در سیستم‌های بازیافت و دفع پسماند (خاک‌خانه، کمبوست، زباله...

• انواع انتشارات ناشی از مرحله مختلف مدیریت پسماند (نظری متن، دی اکسید کربن، ذرات، اکسیدهای ازت، اکسیدهای گوگرد، ذرات سنگین، امونیاک، دی اکسید، وفوران، ترکیبات آلی فرار و بی فنی کرده...

• اثرات انواع انتشارات ناشی از مرحله مختلف مدیریت پسماند (بر مباني ایمنی، خاک، هوا و مواد غذایی

• اثرات انواع انتشارات ناشی از مرحله مختلف مدیریت پسماند (بر سلامت انسان) نظری انواع بیمارها

• سرطان، بیماری‌های تنفسی و... سال های ازدست رفته، مرگ و میر، تولید بیمه های کم وزن و...

• سلامت، ایمنی و بهداشت عوامل اجرایی مدیریت پسماندهای خدمات بهداشتی و درمانی

• سلامت، ایمنی و بهداشت عوامل اجرایی مدیریت پسماندهای کشاورزی

169
سلامت، ایمنی و بهداشت عوامل اجرایی مدیریت پسماندهای صنعتی
مسایل بهداشتی و ایمنی مرتبط با رفت و روب شهری و تنظیف معابر و کانالها
سلامت، ایمنی و بهداشت در مدیریت پسماندها در شرایط اضطراری

روش ارزیابی:

<table>
<thead>
<tr>
<th></th>
<th>پروژه</th>
<th>آزمون های نهایی</th>
<th>ميان ترم</th>
<th>ارزشیابی مستمر</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>۲۰ درصد</td>
<td>آزمون های نوشتری: ۴۰ درصد</td>
<td>۲۰ درصد</td>
<td>۲۰ درصد</td>
</tr>
</tbody>
</table>

منابع:

1. دستورالعمل سلامت، ایمنی و بهداشت عوامل اجرایی مدیریت پسماندهای پزشکی، وزارت بهداشت
3. HPA, *impact on health of emission from landfill sites*, 2011
نام فارسی درس: موارد مدیریتی سیستم‌های مدیریت پسماند
نام انگلیسی درس: Waste Management systems
تعداد واحد: ۲
نوع واحد: ۲ واحد نظری
نوع درس: تخصصی انتخابی
پیشنهاد: ندارد
اموزش تکمیلی: ندارد
هدف درس:
هدف از این درس آشنایی با اصول و مبانی تحلیل سیستم‌ها و کاربرد آن در تحلیل سیستم‌های مدیریت پسماند می‌باشد. ابزارهای مختلف برای کشتار و روش‌های تهیه گیری که می‌توانند در مدیریت پسماند مورد استفاده قرار گیرند در پیش یافته‌ای می‌باشد.

سرفصل درس: ۲۲ ساعت نظری
۱. صمایی سیستم مدیریت پسماند
۲. گزینه‌های اداره پردازش و ذخیره در محل
۳. گزینه‌های جمع‌آوری
۴. گزینه‌های حمل و نقل
۵. گزینه‌های پردازش و بازیافت مواد و انرژی
۶. دفع در زمین
۷. توسعه طرح: انتخاب و اجرای

روش ارزیابی:

<table>
<thead>
<tr>
<th>پژوهه</th>
<th>آزمون های نهایی</th>
<th>میان ترم</th>
<th>ارزیابی مستمر</th>
</tr>
</thead>
<tbody>
<tr>
<td>۶۰ درصد</td>
<td>آزمون های نهایی: ۴۰ درصد</td>
<td>۲۰ درصد</td>
<td>۲۰ درصد</td>
</tr>
</tbody>
</table>

منابع
- محمد حسینی، کامیار برزگانی، نعمت‌الله جعفرزاده حسینی، فرد. مدیریت چالش پسماند (ISWM) اصول مهندسی
- مسائل مدیریتی، انتشارات خانیاران، ۱۳۸۸
نام فارسی درس: مدیریت پسماند‌های بهداشتی درمانی
نام انگلیسی درس: Health care Waste Management

تعداد واحد: ٢

نوع واحد: ۲ واحد نظری

نوع درس: تخصصی انتخابی

پیش‌نیاز: ندارد

آموزش تکمیلی: ندارد

هدف درس: آشنایی با مباحث مدیریت پسماند‌های بهداشتی درمانی و ویزه تاریخچه آنها و سیر تحولات آنها. آشنایی با انواع مختلف و منابع آن، آشنایی با ترکیب فیزیکی و شیمیایی اجزا پسماند، ریز تولید این نوع پسماند در ایران و دیگر کشورها آشنایی با عناصر موظف به صورت تک در مدیریت پسماند‌های بهداشتی درمانی.

سرفصل درس: ۲۲ ساعت نظری

- تعاریف و طبقه‌بندی های مختلف پسماند مراکز بهداشتی درمانی
- انواع پسماند مراکز بهداشتی و درمانی و ویرگی های کمی و کیفی پسماندهای آنها
- مراحل مدیریت پسماند مراکز بهداشتی-درمانی
- کمیته سازی، چیدمان در مبدا
- کنگره، رنگ بندی و برچسب‌گذاری
- بهداشتی-پایداری، جمع آوری و ذخیره در محل
- حمل و نقل
- روش‌های تصمیم‌گیری و دفع
- مدیریت پسماند‌های مراکز بهداشتی-درمانی
- اطلاع رسانی و اموزش
- موارد بهداشتی شغلی و حفاظت شخصی
- قوانین، دستورالعمل ها و شیوه‌های مدیریت پسماند‌های مراکز بهداشتی-درمانی

روش ارزیابی:

<table>
<thead>
<tr>
<th>آزمون های نهایی</th>
<th>میان‌TERM</th>
<th>ارزیابی مستمر</th>
</tr>
</thead>
<tbody>
<tr>
<td>پیروزه ۴۰ درصد</td>
<td>۴۰ درصد</td>
<td>۴۰ درصد</td>
</tr>
</tbody>
</table>

منابع

1. W.H.O, 1999 "safe management of waste from health-care activities"
2. Tissat F., Fabres B., "health care wastes", regional center for environmental health activities (CEHA)
3. Pattinson R.E., "infectious wastes" Health department, Ohio, USA
5. WHO, 2005 "management of health-care solid waste at primary health-care centers – A decision guide"
نام فارسی درس: آمار زیست محیطی
Statistics fo Environmental Engineers
نام انگلیسی درس:

تعداد واحد: ۲
نوع واحد: ۲ واحد نظری
نوع درس: تخصصی انتخابی
پیشنهاد نداده
آموزش تکمیلی: ندارد

هدف درس: هدف از این درس معرفی آمار به مهندسین محیط زیست به عنوان ابزاری برای در تجزیه و تحلیل مسائل زیست محیطی می باشد. این درس با معرفی و حل مثال‌هایی مشابه با آنچه مهندسین محیط زیست در کار خود با آن روپر استفاده می‌نمایند، در تمامی هدف‌های مذکور دارد. به این منظور در ابتدا به معرفی مجموعه‌ای از روش‌های آماری که این مهندسین در جمع‌آوری و تجزیه و تحلیل اطلاعات به آنها احتیاج دارند پرداخته می‌شود و سپس به مثال‌های مختلفی از کاربرد این روش‌ها در حیطه مسائل محیط زیست پرداخته می‌شود. در اکثر مثال‌های ارائه شده در این درس مهندسین محیط زیست ابدهی به آنها خوبی تبدیل به این روش‌ها و انداده گیری داده‌ها بهتری می‌کنند و با توجه به واقعیت بودن مثال‌ها و قرار دادن آنها با مسائل موجود، توانایی درک و پیگیری های مختلف داده‌ها و انتخاب مسائل مرتبط با تجزیه و تحلیل داده‌ها و نحوه استخراج اطلاعات از داده‌ها در آنها ایجاد می‌گردد.

سروفصل درس: ۲۲ ساعت نظری
- نقض آمار در مهندسی محیط زیست
- خلاصه سازی و نمایش داده‌ها
- متغیرهای تصادفی و توزیع احتمال
- تصمیم‌گیری در مورد نمونه‌گیری
- تصمیم‌گیری در مورد زمان نمونه‌گیری
- آماری و آماری
- ساخت مدل‌های تجربی
- طرح آزمایش‌های مهندسی

<table>
<thead>
<tr>
<th>پروژه</th>
<th>آزمون‌های نهایی</th>
<th>میان‌تراکم</th>
<th>ارزش‌بندی مستمر</th>
</tr>
</thead>
<tbody>
<tr>
<td>۲۰ درصد</td>
<td>۲۰ درصد</td>
<td>۲۰ درصد</td>
<td>۲۰ درصد</td>
</tr>
</tbody>
</table>
نام فارسی درس: طراحی خاکچال
Landfill site design

تعداد واحد: ۲ واحد

نوع واحد: ۱ واحد نظری و ۱ واحد عملی

نوع درس: تخصصی انتخابی

پیشنهاد: ندارد

آموزش تکمیلی: سفر علمی

هدف درس: آمادگی دانشجوان جهت طراحی خاکچال‌های بهداشتی

سرفصل درس: ۱۶ ساعت نظری و ۲۲ ساعت عملی

نظری:
۱- مدیریت شیب‌های
۲- تصفیه‌های
۳- مدیریت گاز خاکچال
۴- طراحی بخش استحکام خاکچال
۵- کنترل کیفیت
۶- ایمنی و بهداشت

عملی:
۱- تهیه ی نهایی تانک‌های از یک مکان
۲- بررسی نیازهای آماده‌سازی زمین
۳- تهیه ی نهایی دفن بهداشتی مکان

روش ارزیابی:

<table>
<thead>
<tr>
<th>پروژه</th>
<th>آزمون‌های نهایی</th>
<th>میان‌ترم</th>
<th>ارزش‌پذیری مستمر</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>آزمون‌های ترم</td>
<td>۳۰ درصد</td>
<td>۳۰ درصد</td>
</tr>
</tbody>
</table>

۱۷۶
منابع:

عبدالی محمدعلی، صدیقیان سیاوش، امیری. خاکچال مهندسی بسیار اهمیت دارد. انتشارات دانشگاه تهران. 1392.

- عبدالی محمدعلی بازیافت و دفع مواد زائد جامد شهری (کمپرس و دفن)، سازمان شهرداریهای کشور. 1380.

- W. A. Worrell, P. A. Vesilind (2010), Solid Waste Engineering
- G. Tchobanoglous, F. Kreith (2002), Handbook of Solid Waste Management
همهی سطح تکمیلی: سفر علمی
هدف درس: آشنایی دانشجویان با مبانی نظری تولید شیرابه در محلهای دفن پسماند شهری و روشهای بارور کمیت شیرابه، تفکرات کمیت شیرابه، روشهای تولیدی و انتقال شیرابه در لایه‌های زیر سطحی فرآیندهای و سیستم‌های تصفیه شیرابه و نیز فرآیندهای تولیدی کاز در محلهای دفن پسماند شهری، مدل‌های محیطی، مبانی طریقی سیستم‌های جمع‌آوری، انتقال، تصفیه، مسئولیت و وابستگی به انرژی
سرفصل درس: 1: ساعت نظري و 2: ساعت عملی
نظری:
1. آشنایی با ساختار محل دفن پسماند شهری
2. آشنایی با مبانی نظری تولید شیرابه و معرفی روابط تجربی و مدل‌های مرتبط
3. تفکرات کمیت شیرابه در طول عمر محل دفن پسماند شیرابه در داخل محل دفن و لایه‌های زیرسطحی Natural Attenuation
4. فرآیندهای تصفیه شیرابه
5. سیستم‌های تصفیه شیرابه
6. Bioreactor Landfills
عملی:
1. انتخاب یک خاکچال دفن پسماند شهری
2. بررسی جریان و متغیر تولید شیرابه در خاکچال
3. ارزیابی روشهای مدیریت شیرابه برای خاکچال
4. تنظیم مقدمه‌های اجرایی
- John Pichtel, 2005, WASTE MANAGEMENT PRACTICES, Municipal, Hazardous, and Industrial, Taylor and Francis
- Raymond N. Yong, 2001, Geoenvironmental engineering: contaminated soils, pollutant fate and mitigation, CRC Press
نام فارسی درس: مدیریت گاز و استحصال انرژی در خاکچال
Landfill gas management and energy recovery

تعداد واحد: 2 واحد

نوع واحد: 2 واحد نظری

نوع درس: تخصصی انتخابی

پیشیاز: تدارک آموزشی تکمیلی: تدارک

هدف درس: آشنایی دانشجویان با فرآیندهای تولید گاز در محلهای دفن پسماند شهری، مدل‌های مربوطه، مبانی طریق‌های سیستم‌های جمع آوری، انتقال، تصفیه، سوزاندن و تبدیل به انرژی

سرفصل درس: 22 ساعت نظری و 0 ساعت عملی

1- فرآیند و سناریوک در محلهای تولید بیو‌گاز در محلهای دفن پسماند شهری
2- کاریابی تولید و استحصال گاز
3- مبانی طریق‌های سیستم‌های جمع آوری گاز
4- معرفی روش‌های بازیابی انرژی از گاز
5- مبانی طریق‌های تولید الکتریسیته از گاز

روش ارزیابی:

<table>
<thead>
<tr>
<th>بروره</th>
<th>آزمون های میانهای</th>
<th>میانه ترم</th>
<th>ارزیابی مستمر</th>
</tr>
</thead>
<tbody>
<tr>
<td>120</td>
<td>30</td>
<td>30</td>
<td>20</td>
</tr>
</tbody>
</table>

منابع:

US EPA Landfill Methane Outreach Program (LMOP) website
- Intergovernmental Panel for Climate Change (IPCC) website and models
- John Pichtel, 2005, WASTE MANAGEMENT PRACTICES, Municipal, Hazardous, and Industrial, Taylor and Francis
Unit operation in resource recovery engineering

Number of chapters: 2

Type of chapter: 1

Number of lectures: 1

Types of classes: Teaching

Preparation: Scientific

Course objective: To familiarize students with the processes and equipment of one of the resource recovery engineering.

Credit: 16 hours of lectures and 22 hours of practical

Lectures:
1. Characteristics of waste and treatment facilities
2. Chemical, physical and mechanical
3. Chemical and physical-electrical

Practical:
1. Preparation of a specific waste treatment
2. Determination of characteristics
3. Acceptance of flanges and connections
4. Record of waste treatment

Method of evaluation:

| Credits | Maximum Grade
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>100</td>
</tr>
<tr>
<td>30</td>
<td>100</td>
</tr>
</tbody>
</table>

Conclusion:

Mohammad Ehsan 1384, Resource Recovery, Mirza Ahmad, Publications of the Academy of Tehran.

نام فارسی درس: دفع پسماند
نام انگلیسی درس: Waste Disposal
تعداد واحد: 2 واحد
نوع واحد: 2 واحد نظری
نوع درس: تخصصی انتخابی
پیشنهاد: ندارد
آموزش تکمیلی: سفر علمی
هدف درس: آشنایی دانشجویان با اصول دفع پسماند
سرفصل درس: 2 ساعت نظری و 3 ساعت عملی

1- روش‌هاي دفع پسماند
2- دفن بهداشتی
3- آماده‌سازی مكان دفن پسماند
4- عملیات در مكان دفن پسماند
5- خاکچال خودپا
6- خاکچال محصور
7- خاکچال بو راکتور
8- قوانین، مقررات و دستورالعمل‌های دفن بهداشتی

روش ارزیابی:

<table>
<thead>
<tr>
<th>ارزیابی مستمر</th>
<th>برخورد</th>
<th>ارزیابی های نهایی</th>
</tr>
</thead>
<tbody>
<tr>
<td>میان ترم</td>
<td>30 درصد</td>
<td>آزمون های نوشته‌ای: 30 درصد</td>
</tr>
</tbody>
</table>

منابع:
- عبدالی محمدرئیسی، صدیقیان سیاوش، امیری لیلا. خاکچال مهندسی پسماند، انتشارات دانشگاه تهران، 1392.
- W. A. Worrell, P. A. Vesilind (2010), Solid Waste Engineering
نام فارسی درس: مدیریت پسماند های معدنی و نفتی

Mine and Oil Waste Management: درس

تعداد واحد: ۲

نوع واحد: تئوری

نوع درس: تخصصی انتخابی

پیشنهاد: ندارد

آموزش تکمیلی: ندارد

هدف درس: هدف از ارائه این درس آشنایی دانشجویان به استخراج نفت و منابع معدنی و پسماندهای حاصل از اینگونه فعالیت‌ها مانند خرده‌های حفاری (Drilling Muds)، گل‌های حفاری (Drill Cutting)، سنگ‌های بطاطس (Tailing) و نیز تولید پساب های معدنی و نیز زهاب اسیدی معدنی (Acid mine drainage) بازیافت و نیز تولید پساب های معدنی و نیز زهاب اسیدی معدنی (Acid mine drainage) بازیافت و نیز تولید پساب های معدنی و نیز زهاب اسیدی معدنی (Acid mine drainage) بازیافت زیست محیطی اینها و ارائه راهکار های مدیریتی انها می‌باشد.

سر فصل های درس: ۲۳ساعت نظری

۱. آشنایی و شناخت با ترکیبات موجود در نفت و مواد مختلف معدنی
۲. آشنایی و شناخت با پسماند های نفتی
۳. آشنایی و شناخت با ترکیبات موجود در پسماند های مواد مختلف معدنی
۴. مواد شیمیایی مورد استفاده و نیاز در حفاری و استخراج نفت و مواد مختلف معدنی
۵. پساب‌های تولیدی از کارخانه های فراوری مواد معدنی
۶. پساب‌های تولیدی از سنگ‌ها و مواد باطله معدنی
۷. بررسی ماهیت زهاب‌های آسیدی معدن
۸. خنثی سازی و مدیریت پساب‌های معدنی و پسماند های نفتی
۹. علاج بخشی و ترمیم مناطق معدنی و تحت تأثیر حفاری های نفتی

روش ارزیابی:

<table>
<thead>
<tr>
<th>پروژه</th>
<th>ارزش‌های نهایی</th>
<th>میان ترم</th>
<th>ارزش‌های مستمر</th>
</tr>
</thead>
<tbody>
<tr>
<td>۳۰ درصد</td>
<td>۳۰ درصد</td>
<td>۲۰ درصد</td>
<td></td>
</tr>
</tbody>
</table>
نام فارسی درس: مدیریت و قوانین آلاینده‌های نفتی در خاک
Management and Regulation of Petroleum Contaminants in Soil

تعداد واحد: ۲

نوع واحد: نظری

نوع درس: تخصصی انتخابی

پیشنهاد: ندراد

آموزش تکمیلی عملی: ندراد

هدف درس: آشنایی دانشجویان با آلاینده‌های خطرناک از جمله پسماندهای نفتی، سروشیت هیدروکربورها در خاک و همچنین روشهای اصلاحی جهت هیدروکربورهای نفتی در خاک و ارژی‌ای غلافت هیدروکربورها از نظر بلغ خاک آلوده می‌باشد.

سرفصل درس: ۲۲ ساعت نظری

- ترکیب هیدروکربن‌های نفتی و ویژگی‌های آنها
- خطرات آلاینده‌های نفتی برای انسان و محیط
- رفتار آلاینده‌های نفتی در خاک
- انتقال آلاینده‌های نفتی در خاک
- پتاسیم آلودگی منابع آب زیرزمینی توسط آلاینده‌های نفتی موجود در خاک
- فناوری‌های فیزیکی - شیمیایی بازیابی آلاینده‌های آلاینده‌های نفتی در خاک
- فناوری‌های زیستی بازیابی آلاینده‌های آلاینده‌های نفتی در خاک
- مبناهای فنی و اقتصادی جهت مدیریت آلاینده‌های آلاینده‌های نفتی در خاک
- کنولپیون هاچی چهارم و استانداردهای آلودگی نفتی
- تعرفه مواد زائد خطرناک
- تاریخچه و اهمیت قانون RCRA
شناسی مواد زائد خطرناک
RCRA
مقاهیه پایه ای و واحدهای شناسی مواد زائد خطرناک در
RCRA
دسته بندی زاندهای در
RCRA
ملاحظات ایمنی جهت جمع آوری و انتقال مواد زائد خطرناک
تولید کننده‌های مواد زائد خطرناک
همیت و الزامات گزارش نویسی صحیح نوسانات تولید کننده‌های کلان و خرد
محدودیت های دفع مواد زائد خطرناک
صادرات و واردات مواد زائد خطرناک
RCRA
الزامات بخصوص مواد زائد خطرناک در
RCRA
مذاکرات دفع زیرزمینی
مسئولیت‌های اقتصادی در مدیریت مواد زائد خطرناک
CERCLA
تاریخچه و اهمیت شکل‌گیری قانون
CERCLA
شبه قانون
CERCLA
پایش در
CERCLA
مسئولیت‌های دولت، مردم و تولید کننده‌ها در
انتشار مواد زائد خطرناک در محیط چرخه پاسارگاژ
CERCLA
الزامات گزارش نویسی در
CERCLA
استانداردهای اجباری پاکسازی در
CERCLA و RCRA
مروری بر قوانین بین‌المللی جدید در خصوص مواد زائد خطرناک و مقایسه آنها با

روش ارزیابی:

188
<table>
<thead>
<tr>
<th></th>
<th>پروژه</th>
<th>آزمون های نهایی</th>
<th>میان ترم</th>
<th>ارزشیابی مسکن</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>۱۰۰ دیصد</td>
<td>۵۰ دیصد</td>
<td>۱۰ دیصد</td>
<td>۱۰ دیصد</td>
</tr>
</tbody>
</table>

فهرست منابع:

فصل هفتم
فهرست مطالب دروس گرايش
سواحل
نام فارسی درس: فیزیک و دینامیک دریا

نام انگلیسی درس: Physical and Dynamical Oceanography

تعداد واحد: 2

نوع واحد: نظری

نوع درس: تخصصی انتخابی

پیشناز: ندارد

آموزش تکمیلی: سیمتار

هدف درس: استاندارد و فیزیکات فیزیکی - دینامیکی محیط زیست دریا و ساحل بعنوان یک دانش ضروری برای مطالعه نحوه اثر و سرنشست آبیانه ها در محیط زیست دریایی

سرفصل درس: ۲۲ ساعت نظیری و ۸ ساعت عملی

- آشنایی با آبیانوس ها و دریاهای جهان
- فلاته قاره و عوامل طبیعی کنار آبیانوس ها و دریایا
- فیزیکات فیزیکی آب دریا (شوری، انرژی، داشتن دانشگاهی)
- فرآور در دریا
- معادله پیوستگی حجم
- پایداری استاتیکی و دینامیکی
- معادلات حرکت در دریا
- نقش ترم های مختلف و مقادیر ترم ها در معادلات حرکت-
- جریانات دریایی

جریانات بدون اصطکاک

جریانات با اصطکاک، جریانات ناشی از باد

جریانات ناشی از اختلاف داشتن دانشگاهی

- امواج در دریا
- جریان و محور در دریا
- تبادلات انرژی بین آتشفشان و دریا
- خصوصیات هیدرودینامیکی خوراها و مصب ها (estuary)
روش ارزیابی:

<table>
<thead>
<tr>
<th>پروژه</th>
<th>آزمون های نهایی</th>
<th>میان ترم</th>
<th>ارزیابی مستمر</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۰ درصد</td>
<td>آزمون های نوشته‌ای: ۶۰ درصد</td>
<td>۲۵ درصد</td>
<td>آزمون عملکردی: ۳۰ درصد</td>
</tr>
</tbody>
</table>

منابع:
هم‌دامی کننده و غیر فاصله‌گذار و فناوری‌های ترکیب‌های مناسب برای ارزیابی موضوعات در هر مورد.

سرفصل درس: سه ساعت نظری و سه ساعت عملی

- مروری بر نویز امواج، جریان‌های نزدیک ساحل، دینامیک لایه مزرع
- خصوصیات رسوب، رسوبات گذشته و غیر گذشته
- واکنش در سطح تحت اثر امواج و همچنین جریان‌های ایجاد شده، شروع حرکت رسوب، دینامیکی شکل‌های بستر

انتقال بستر

- انتقال رسوب عمود بر ساحل، بروز فلزات ساحلی، تکثیر بارهاي رسوبی
- انتقال رسوب موازی به ساحل، فرایندهای واکنش بستر به ساخته‌ها ساحلی
- مدل‌های های انتقال رسوب

روش ارزیابی:

<table>
<thead>
<tr>
<th>پروژه</th>
<th>ارزیابی مقدماتی</th>
<th>میان‌ترم</th>
<th>پایان‌ترم</th>
<th>نوه‌شماری: ۴۰ درصد</th>
</tr>
</thead>
<tbody>
<tr>
<td>۳۰ درصد</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

منابع:

- Coastal Engineering Manual, Army Corps of Engineers, 2002; online
 atchl.erdc.usace.army.mil/cem
نام فارسی درس: سنجش از دور در مطالعات محیط زیست دریایی
Remote Sensing in Marine Environment Studies

تعداد واحد: 2
نوع واحد: نظری
نوع درس: تخصصی انتخابی
پیشنهاد: ندارد
آموزش تکمیلی: سیمینار

هدف درس: آشنایی با مبانی سنجش از دور و استفاده از آن در مطالعات محیط زیستی ساحلی

سرفصل درس: ۲۳ ساعت نظری و ۵ ساعت عملی
- مقدمه ای بر انتقال اشعه ای، سنسورها، مشاهدات و تکنیک های ماهواره ای
- سنجش از دور درجه حرارت آب
- دستگاه ها و پلاستیم های داخل آب برای کاربردهای سنجش از دور رنگ دریا
- رنگ مساحت ساحلی دریا و کاربرد آن در مسائل تحقیقاتی و مهندسی
- خصوصیات بیوپتیکال آب‌های ساحلی
- سنجش از دور مواد از ارگانیک در آب‌های ساحلی
- مونیتورینگ رسوبات معلق در آب‌های ساحلی با استفاده از سنجش از دور
- سنجش از دور جلبی های مضر
- سنجش از دور مرجان‌های دریایی

روش ارزیابی:

<table>
<thead>
<tr>
<th>پروژه</th>
<th>ارزشیابی اندیکاتور</th>
<th>میانی مرکز</th>
<th>ارزشیابی مستمر</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ارزشیابی نهایی</td>
<td>۳۰ دید</td>
<td>۱۰ دید</td>
</tr>
<tr>
<td></td>
<td>۶۰ دید</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

منابع:
هدف درس: آشنایی با اصول طراحی آتشفشان با بعنوان موثر ترین سازه برای تخلیه محیط زیستی فاضلاب به دریا

سرفصل درس: ۲ ساعت نظری و ۰ ساعت عملي
- مقصد: استاندارد های محیط زیستی آب‌های ساحلی و دریایی، نقش آتشفشان در حفاظت از محیط زیست دریایی و تجاربیت جهانی استفاده از آتشفشان ها
- نوع، اجزا و جانداران آتشفشان، انواع دیفیوزور در آتشفشان ها، نقش بارامترهای محیطی در انتخاب نوع و جانداران آتشفشان و دیفیوزور
- تئوری و مکانیزم اختلال جت، پلوک بودن جت در محیط های دریایی
- مکانیزم رقیق شدن فاضلاب خروجی از دیفیوزور آتشفشان، بارامترهای جریان، تخلیه پلوک های نقطه ای و خطی در محیط لاک بندی شده اثرات فاصله پروری ها
- طراحی دیفیوزور برای اختلال اولیه: هیدرولیک داخلی، طول دیفیوزور، شکل و جانداران دیفیوزور جزئیات دیفیوزور
- مکانیزم و نقش بخشی و چابکیما نانویی (میان‌دان دور) در طراحی آتشفشان
- مدل های طراحی آتشفشان
- ساخت آتشفشان، نیروهای وارد بر آتشفشان، جنس لوله آتشفشان و روش‌های ساخت
- مطالعه موردی

روش ارزیابی:

<table>
<thead>
<tr>
<th>ارزیابی مسیر</th>
<th>میان ترم</th>
<th>پروژه</th>
<th>آزمون‌های نهایی</th>
</tr>
</thead>
<tbody>
<tr>
<td>میدان</td>
<td>۱۲۰ درصد</td>
<td>۱۲۰ درصد</td>
<td>۱۲۰ درصد</td>
</tr>
<tr>
<td>آزمون‌های نهایی</td>
<td>۵۰ درصد</td>
<td>۵۰ درصد</td>
<td>۵۰ درصد</td>
</tr>
</tbody>
</table>
3 Mixing in Inland and Coastal Waters, Fischer, List, Brooks and Imberger, (1979)
نام فارسی درس: طراحی سازه‌های حفاظت از ساحل
نام انگلیسی درس: Coastal Protection Structures Design
تعداد واحد: ۲
نوع واحد: نظری
نوع درس: تخصصی انتخابی
پیشنهاد: ندارد
آموزش تکمیلی: ندارد
هدف درس: ایجاد شناخت در زمینه مبانی طراحی انواع سازه‌های حفاظت از ساحل با توجه به اثرات این نوع سازه‌ها بر محیط زیست دریایی

سرفصل درس: ۲۳ ساعت نظری و ۰ ساعت عملی
- مروری بر نظریه و مشخصات امواج، تولید امواج، انتقال موج به آب کم عمق
- آشنایی کلی با انواع سازه‌های دریایی حفاظت ساحل، موج شکن، گروین، جنگل، دیوار ساحلی
- بررسی مسائل جانشینی سازه‌های دریایی حفاظت ساحل
- بررسی نیروهای وارد بر سازه‌های دریایی حفاظت ساحل
- مبانی طراحی انواع موج شکن‌ها
- مبانی طراحی گروین‌ها
- مبانی طراحی جنگل‌ها
- اثرات محیط زیستی احتمالی ناشی از ساخت سازه‌های حفاظت ساحل و ارزیابی این اثرات
- روش‌های ساخت سازه‌های حفاظت ساحل
- مشخصات مصالح مصرفی مناسب برای ساخت سازه‌های حفاظت ساحل

روش ارزیابی:

<table>
<thead>
<tr>
<th>بروزه</th>
<th>آزمون‌های نهایی</th>
<th>میان ترم</th>
<th>ارزیابی مستمر</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰۳ ردص</td>
<td>۶۰ ردص</td>
<td>۰۳ ردص</td>
<td></td>
</tr>
</tbody>
</table>
2 - Design of Coastal Structures and Sea Defenses, Young C Kim, World Scientific Publishing Company (2014)
5 - Breakwaters, Coastal Structures and Coastlines, Institution of Civil Engineers (ICE), Thomas Telford Publishing (2003)
نام فارسی درس: مدلسازی محیط زیست دریایی پیشرفته
Advanced Marine Environment Modeling

تعداد واحد: ۲
نوع واحد: نظری
نوع درس: تخصصی انتخابی
پیشنیاز: ندارد
آموزش تکمیلی: ندارد

هدف درس: آشنایی با مدلسازی عدده در مطالعات محیط زیستی دریایی و انجام عملی مدلسازی

سرفصل درس: ۲۲ ساعت نظری و ۴ ساعت عملی
ارائه مراحل مختلف و توضیح تکنیک‌های لازم برای انجام فرآیند مدلسازی و تست مدل، کالیبراسیون، روش‌های اثربخش حسابیت

- آشنایی با مدلسازی و مدل‌های شناخته شده مرتبط با مدلسازی عدده هیدرودینامیک
- آشنایی با مدلسازی و مدل‌های شناخته شده مرتبط با مدلسازی آلودگی های دریایی (نفت و غیره)
- آشنایی با مدلسازی و مدل‌های شناخته شده مرتبط با مدلسازی آب‌سیستم‌های دریایی
- مطالعه موردی و انجام پروژه

روش ارزیابی:

<table>
<thead>
<tr>
<th>پروژه</th>
<th>آزمون های نهایی</th>
<th>میان ترم</th>
<th>ارزیابی مستمر</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>۵۰ درصد</td>
<td>۲۰ درصد</td>
<td></td>
</tr>
<tr>
<td></td>
<td>آزمون های نوشتاری: ۱۰ درصد</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>عملکردی: درصد</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

منابع:
نام فارسی درس: اندوزه‌گیری و آنالیز داده‌های محیط زیست دریاپیمایی

Advanced Marine Environment Data Measurement and Analysis

نام انگلیسی درس: 2
تعداد واحد: 2
نوع واحد: نظری
نوع درس: تخصصی انتخابی
پیشنهاد: ندارد
آموزش تکمیلی: ندارد
هدف درس: آشنایی دانشجویان با اصول، مبانی و روش‌های اندوزه‌گیری و آنالیز و پردازش آماری داده‌های مرتبط با محیط زیست دریا

سربلند درس: 32 ساعت نظری و 0 ساعت عملی

- جمع آوری و ثبت داده (ملزومات پایه نمونه‌گیری، درجه حرارت، شوری، عمق و فشار، تراز سطح آب، جریانات اولیه، جریانات لاغر، باد، رديب‌های شیمیایی)
- پردازش و ارائه داده (کالیبراسیون، انتربولاسیون، انواع ارائه شناخته شده، پروفیل، مقطعی، نقشه، سری زمانی، هیستوگرام)
- روش‌های آماری و مدل‌برداری (توپیژ نمونه‌های احتمالات، محدوده اطمینان‌ها، روش‌های تخمین، تخمین خطي، تکنیک‌های اصلاح و طبقه‌بندی خط و ...)
- آنالیز مکانی میدان‌های داده (روش‌های سنتی متوسط گیری، امپریکال اوتوموگراف، فانکشن، آنالیز مود نرمال، روش های معکوس)
- روش‌های آنالیز سری زمانی (فرانکا استوکستیک، ناپی هم‌اکنکا، آنالیز اوتورگانال فیلتر بالا دیجیتال)

روش ارزیابی:

<table>
<thead>
<tr>
<th>پروازه</th>
<th>آزمون‌های نهایی</th>
<th>میان ترم</th>
<th>ارزیابی مستمر</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>30 دیده</td>
<td>آزمون نهایی نوشتاری: 40 دیده</td>
</tr>
</tbody>
</table>

منابع:
نام فارسی درس: فیزیک و دینامیک دریایی پیشرفته
Advanced Physical and Dynamical Oceanography

تعداد واحد: ۲

نوع واحد: نظری

نوع درس: تخصصی انتخابی

پیشنهاد: ندارد

آموشت تکمیلی: سمنار

هدف درس: آشنایی با خصوصیات دینامیکی محیط زیست دریا و ساحل و یک دانش دریایی برای مطالعه نحوه تغییرات آب و سرعت آب و پانزده‌ها در محیط زیست دریایی

سرفصل درس: ۲۳ ساعت نظری و ۲ ساعت عملی

- مقدمه (معادلات حرکت، دوران، جریان دوختروفیک، لایه مزین اکمان، انتقال اکمان، مقياس های زمانی)
- جریان‌های ناشی از باد، لایه سطحی اکمان، جریان‌های داخلی سوردلاب، لایه مزین استومنل
- اثرات تغییرات جهانی و لایه بندی بر روی دینامیک اقیانوس
- جریان‌های مرز غربی (بعنوان مثال گلف استریم)
- جریان‌های آب عمیق
- امواج راسپی
- امواج کلوین
- امواج قلال فاره
- امواج داخلی

روش ارزیابی:

<table>
<thead>
<tr>
<th>پروژه</th>
<th>آزمون‌های نهایی</th>
<th>میان‌TERM</th>
<th>ارزیابی مستمر</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>۱۰۰ درصد</td>
<td>۱۰ درصد</td>
<td>۳۰ درصد</td>
</tr>
</tbody>
</table>

۲۰۳
2 Introduction to Physical Oceanography, Stewart, online book (2008)
نام فارسی درس: مدلسازی در مهندسی سواحل
نام انگلیسی درس: Modeling in Coastal Engineering
تعداد واحد: ۲
نوع واحد: نظری
نوع درس: تخصصی انتخابی
پیشنهاد ندارد
آموزش تکمیلی ندارد
هدف درس: آشنایی با مدلسازی عدیدی در مطالعات مهندسی سواحل و انجام عملی مدلسازی

سوقحل درس: ۲۳ ساعت نظری و ۰ ساعت عملی
- جمع آوری و نیت داده (متغیرات پایه نمودن مدل، درجه حرارت، شور، عمق و فشار، تراز سطح آب، جریانات اولیه، جریانات لکوئانزی باد، رعایت‌های شیمیایی)
- پرداخت و ارائه داده (کالیپرسیون، نترپولاسیون، انواع ارائه شامل: پروفیل، نقطه، سری زمانی، هیستوگرام)
- روش‌های آماری و میکروی خطا (توزیع نمونه، احتمالات، محدوده اطمینان، روش‌های تخمین، تخمین خطی)
- تکنیک‌های اصلاح و طبیعت خطا و ...
- آنالیز مکانی میدان‌های داده (روش‌های سنتی، متغیر کنترل، آماری‌ای کال اورتوگونال، فاکتوری، آنالیز مود نرمال، روش‌های معمول)
- روش‌های آنالیز سری زمانی (فرایند استوکاستیک، تابع‌های هماهنگی، آنالیز فوری، آنالیز هارمونیک، آنالیز استپترال، فیلتر‌های دیجیتال)

روش ارزیابی:

<table>
<thead>
<tr>
<th>ارزیابی</th>
<th>بروزه</th>
<th>پایان‌نامه</th>
<th>میان‌ترم</th>
<th>ارزیابی مستمر</th>
</tr>
</thead>
<tbody>
<tr>
<td>آزمون های نهایی</td>
<td>۴۰ دیدگاه</td>
<td>۴۰ دیدگاه</td>
<td>۳۰ دیدگاه</td>
<td></td>
</tr>
</tbody>
</table>

منابع:
نام فارسی درس: اختلاط و پخش آلودگی در دریا
Pollution Mixing in Marine Environment

تعداد واحد: ۲

نوع واحد: نظری

نوع درس: تخصصی انتخابی

پیشنهاد: ندارد

آموزش تکمیلی: ندارد

هدف درس: آشنایی با نحوه اختلاط و پخش فیزیکی آلاینده‌ها پس از ورود به محیط دریا و آب‌های ساحلی، آشنایی
با نظری و مبانی جهت ها و پلیوم ها و روش‌های محیط زیستی تخلیه فاضلاب در دریا

سرفصل درس: ۳۲ ساعت نظری و ۰ ساعت عملی

- مفاهیم و تماریف پایه در بحث اختلاط
- اصول و مبانی دیفیوزن مولکولی
- اصول و مبانی دیفیوزن توربیلونتی
- دینامیک اختلاط در نواحی ساحلی دریایی
- روش‌های مدل کردن اختلاط در نواحی ساحلی دریایی
- تنوری و مبانی جهت ها و پلیوم های توربیلونتی
- اصول و مبانی سیستم‌های تخلیه فاضلاب در دریا

روش آزمایشی:

<table>
<thead>
<tr>
<th>پروژه</th>
<th>آزمون های نهایی</th>
<th>میان نرم</th>
<th>آزمون های نهایی</th>
<th>میان نرم</th>
<th>مستمر</th>
<th>میان نرم</th>
</tr>
</thead>
<tbody>
<tr>
<td>۵۰ دید</td>
<td>۲۰ گرد</td>
<td>۲۰ دید</td>
<td>۵۰ گرد</td>
<td>۳۰ گرد</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

منابع:
1. Mixing in Inland and Coastal Waters (Fischer, List, Brooks and Imberger, 1979)
2. Ocean Disposal of Wastewater (Wood, Bell and Wilkinson, 1994)
نام فارسی درس: مدلسازی لکه نفتی در دریا
نام انگلیسی درس: Oil Spill Modeling

تعداد واحد: ۲
نوع واحد: نظری
نوع درس: تخصصی انتخابی
پیشنهاد: ندارد
آموزش تکمیلی: ندارد

هدف درس: ایجاد شناخت در زمینه مبانی مدلسازی لکه نفتی در دریا، آشنایی با مدل‌های معنی‌دار مدلسازی لکه نفتی در دریا و کاربرد آنها

سرفصل درس: ۲۲ ساعت نظری و ۱۰ ساعت عملی
- مروری بر خصوصیات نفت، آلودگی نفتی در دریا و فراورده‌های موثر بر لکه نفتی پس از ورود به دریا
- مبانی تئوریک و آلгорیتم‌های مدلسازی فراورده‌های گسترش، انتقال تبخیر، پخش، امولوسیون، اکسیداسیون و رسوب لکه نفتی در دریا
- مدل‌های معنی‌دار لکه نفتی در دریا
- مطالعه موردی
- پیروزه مدلسازی لکه نفتی در دریا

روش ارزیابی:

<table>
<thead>
<tr>
<th>آزمون های نهایی</th>
<th>سیان ترم</th>
<th>ارزیابی مستمر</th>
</tr>
</thead>
<tbody>
<tr>
<td>پروژه</td>
<td></td>
<td></td>
</tr>
<tr>
<td>آزمون های نوشتاری: ۵۰ درصد</td>
<td>۴۰ درصد</td>
<td></td>
</tr>
<tr>
<td>۲۰ درصد</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

منابع:
2 Oil Spill Risk Management: Modeling Gulf of Mexico Circulation and Oil Dispersal, David E. Dietrich, WILEY. (2014-10-06)
نام فارسی درس: مدل‌سازی اکوسیستم‌های دریایی

Tên англійський: Marine Ecosystem Modeling

تعداد واحد: ۲
نوع واحد: نظری
نوع درس: تخصصی انتخابی
پیشنهاد: ندارد
آموزش تکمیلی: ندارد
هدف درس: ایجاد شناخت در زمینه مبانی مدل‌سازی اکوسیستم‌های دریایی، آشنایی با مدل‌های معنی‌دار اکوسیستم‌های دریایی و کاربرد آنها

سرفصل درس: ۲۲ ساعت نظری و ۰۰ ساعت عملی

- مدل‌های شیمیایی بیولوژیکی، فرآیندهای شیمیایی بیولوژیکی، مدل‌های بیومس، اثر محدودیت مواد مندی، اثر گردش مواد، اثر تغذیه زیراکتکتون، ساخت یک مدل ساده، مدل‌سازی رقابت گونه‌ها، مدل‌سازی جند گروهی، مدل‌سازی فراکس فیکس شدن ازت، مدل‌سازی حذف ازت
- مدل‌سازی چرخه حیات
- مدل‌سازی اثرات پارامترهای فیزیکی بر روی دینامیک اکوسیستم دریایی
- مدل‌های کویل شده فیزیکی - بیومسی
- مدل‌سازی دینامیک توزیع مکانی ماهی

روش ارزیابی:

<table>
<thead>
<tr>
<th>پروژه</th>
<th>آزمون‌های نهایی</th>
<th>میان‌TERM</th>
<th>ارزیابی مستمر</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>آزمون‌های نوشته‌ای: ۴۰ درصد</td>
<td>۳۰ درصد</td>
<td></td>
</tr>
</tbody>
</table>

منابع:

نام فارسی درس: آلودگی دریاهای ایران

Pollution in Iranian Seas

تعداد واحد: ۲
نوع واحد: نظری
نوع درس: تخصصی انتخابی
پیشنهاد: ندارد
آموزش تکمیلی: سمینار

هدف درس: ایجاد شناخت از شرایط محیط زیست دریاهای ایران در دریای خزر، خلیج فارس و دریای عمان

سرفصل درس: ۲۲ ساعت نظری و ۰ ساعت عملی
- مروری بر مشخصات فیزیکی، شیمیایی و بیولوژیکی دریای خزر، دریای عمان و خلیج فارس
- مروری بر قوانین و مقررات ملی حفاظت از محیط زیستی دریایی ایران
- بررسی متغیر و آلودگی نفتی در دریاها و ساحل ایران
- بررسی متغیر و آلودگی مواد قابل تجزیه بیولوژیکی در آبهای دریایی ایران
- بررسی تغذیه گرایی و کشند قرمز در آبهای ایران
- بررسی آلودگی بهداشتی در سواحل ایران
- بررسی آلاینده‌های پاپیلار در دریاهای ایران

روش ارزیابی:

<table>
<thead>
<tr>
<th>پروژه</th>
<th>آزمون های نهایی</th>
<th>میان ترم</th>
<th>ارزیابی مستمر</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>۱۲۰ درصد</td>
<td>۵۰ درصد</td>
<td>۰ درصد</td>
</tr>
</tbody>
</table>

منابع:

1 Papers and reports on Pollution in Iranian Seas
هدف درس: ایجاد شناخت در زمینه دینامیک اکوسیستم‌های دریایی و شناخت خصوصیات زیستی دریا تحت اثرات فیزیکی و گیاهی مختلف دریایی از جمله در مناطق سطحی دریا، در مناطق ساحلی و یا آب عمیق، در منطقه تحت اثر آپولینگ، در منطقه که دو توده آبی با خصوصیات مختلف با هم برخوردار دارند و تشکیل یک جبهه دریا می‌دهند. بررسی‌ها در مقدار کمتری مکانی در عمق و در سطح مخلوط‌های دریایی و اقیانوس انجام می‌گیرد.

سرفصل درس: ۲۲ ساعت نظری و ۱ ساعت عملی
- زیست دریا و لایه‌های مرجانی
- زیست دریا در لایه مخلوط سطحی
- زیست دریا در منطقه تحت اثر دهان آب‌های ماهی و اکتشاف ناشی از جزر و ماد
- زیست دریا در منطقه تحت اثر آپولینگ
- اندک‌کشی زیستی فیزیکی در منطقه آب‌های برخوردار (Fronts)
- اندک‌کشی زیستی فیزیکی تحت اثر جزر و ماد، اکتشاف جزر و ماد، اکتشاف داخلی
- زیست در جریان‌های اصلی اقیانوسی، جایگاه ناحیه‌ها و ارتفاع‌ها
- اثرات زیستی ناشی از تغییر در جریان‌های اقیانوسی
- اثرات تغییرات جهانی آب و هوا در جنبه‌های فیزیکی و زیستی اقیانوس و دریا

روش ارزیابی:

<table>
<thead>
<tr>
<th>بروژه</th>
<th>آزمون‌های نهایی</th>
<th>میان‌TERM</th>
<th>ارزیابی مستمر</th>
</tr>
</thead>
<tbody>
<tr>
<td>درصد</td>
<td>درصد</td>
<td>۹۰ درصد</td>
<td>۷۰ درصد</td>
</tr>
</tbody>
</table>

منابع:

نام فارسی درس: زنومورفولوژی ساحل
نام انگلیسی درس: Coastal Geomorphology
تعداد واحد: ۳
نوع واحد: نظری
نوع درس: تخصصی انتخابی
پیشنهاد: ندارد
آموزش تکمیلی: ندارد
هدف درس: ایجاد شناخت در زمینه ایزوگراف های واقع در منطقه ساحلی، نحوه ایجاد این شکل ها، خصوصیات
آنها و ارتباط آنها با فرآیندهای ساحلی از جمله هیدرودینامیک امواج، انتقال رسوب و جزر و مد
سفرساز درس: ۲۲ ساعت نظری و ۶ ساعت عملی
- فرآیندهای ساحلی
- خشکسی و تغییرات ترکیب سطح آب
- ساحل های صخره ای
- ساحل های شنی
- اسپیت و بری‌ها
- دیونهای ساحلی
- شکل‌های زمینی جزر و مدن، مارش های آب شور و جنگل های خزان
- اسجواری ها و لاگون ها
- دلتا
- آب سنگ های مرجاني
- طبقه زندگی شکل‌های زمینی ساحلی
روش ارزیابی:

<table>
<thead>
<tr>
<th>درصد</th>
<th>درصد</th>
<th>درصد</th>
</tr>
</thead>
<tbody>
<tr>
<td>آزمون های نهایی</td>
<td>میان ترم</td>
<td>ارزیابی مستمر</td>
</tr>
<tr>
<td>۳۰ درصد</td>
<td>۲۰ درصد</td>
<td>۵۰ درصد</td>
</tr>
</tbody>
</table>

منابع:

نام فارسی درس: فرآیندهای مصبی

نام انگلیسی درس: Estuarine Processes

تعداد واحد: ۲

نوع واحد: ۲ واحد نظری

نوع درس: تخصصی انتخابی

پیشنهاد: ندارد

آموزش تکمیلی: آزمایشگاه

هدف درس: آشنایی دانشجویان با انواع مصب، نقش آنها در تأمین مواد غذایی، پاکسازی الاینده های زمین ساخت و نهایتاً بهره‌گیری از فرآیندهای طبیعی در پاکسازی آلودگی های انسانساخت

سرفصل درس:

- آشنایی با انواع وسایل نمونه‌برداری
- شناخت انواع مصب و نحوه تعیین نوع مصب
- نقش فرآیند لخته‌سازی در پاکسازی الاینده های انسانساخت
- نقش فرآیند لخته‌سازی در تأمین مواد غذایی
- نقش گونه عناصر در فرآیندهای مصبی
- بهبود فرآیند لخته‌سازی با استفاده از جریانهای الکتریکی HSC
- آشنایی با ترم افزار HSC
- آشنایی عملی دانشجویان با روش‌های ایجاد لخته در آزمایشگاه HSC
- آشنایی دانشجویان با وسایل آزمایشگاهی

روش ارزیابی:

<table>
<thead>
<tr>
<th>بروره</th>
<th>آزمون های نهایی</th>
<th>میانی ترم</th>
<th>ارزیابی مستمر</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>۲۰ درصد</td>
<td>۱۵</td>
</tr>
<tr>
<td></td>
<td>آزمون های نوشتاری: ۵۰ درصد</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

متون:

۱- کتاب راهنمای نمونه برداری و آنالیز سم شناختی رسوبات، کرباسی، عبداللهضا و بیاتی، آیدا. جهاد دانشگاهی تهران. ۱۳۹۴ (چاپ دوم).

نام فارسی درس: آزمایش‌های تجدید پذیر دریایی
نام انگلیسی درس: Marine Renewable Energy
تعداد واحد: ۲ واحد
نوع واحد: نظری
نوع درس: تخصصی انتخابی
پیشنهاد: ندارد
آموزش تکمیلی: ندارد

هدف درس: امروزه بدین حال باید به نوعی آب و همچنین الهام‌گیری سوخته‌های فسیله، استفاده از منابع تجدیدپذیر به ویژه آنرژی‌های تجدیدپذیر دریایی در جهان حال کسترش می‌باشد. از میان انرژی‌های تجدیدپذیر، انرژی‌های دریایی از پرکردن و بزرگ‌ترین انرژی‌ها به شمار می‌روند. و به همین دلیل کشورهای پیشرفته دنیا بر نیاز جامعی برای استحصال انرژی از دریاها تاکید می‌کنند. با توجه به ساحل‌های بیرونی بودن کشور ایران در شمال و جنوب و نیاز روزافزون انرژی باسیکی علم استفاده از این انرژی‌ها را گسترده‌ترین بدنه‌ای استفاده از انرژی‌های تجدیدپذیر به حداکثر رسیدن دیده و می‌باشد که با استفاده از این روش‌ها گزارش قرار گیرد.

سرفصل درس: ۲۲ ساعت نظری
- انرژی تجدیدپذیر ناشی از جزر و مد در سواحل به روش سنتی به دام افتادن آب و ایجاد اختلاف تراز. روش‌های تک حوضچه و دو حوضچه ای، پیامدهای زیست محیطی احداث سد
- انرژی تجدیدپذیر ناشی از جهان در سواحل. مزوم‌های سیستم‌های استحصال انرژی
- انرژی تجدیدپذیر ناشی از اختلاف دما در سواحل و اثرات زیست محیطی ناشی از استحصال این انرژی
- انرژی تجدیدپذیر امواج شامل امواج خط ساحلی، تندیسک ساحلی و فراساحلی و میدان‌های اولیه
- انرژی تجدیدپذیر پدیده‌های فراساحلی
- انرژی تجدیدپذیر اختلاف گرمایی (شیپوری)
- انرژی تجدیدپذیر اختلاف گرمایی (شیپوری)
- انرژی منابع زیستی و رسوبات دریایی
بررسی یکی از انواع انرژی‌های تجدیدپذیر و انرژی‌های نیرومند کشور به عنوان پروژه

روش ارزیابی:

<table>
<thead>
<tr>
<th>پروژه</th>
<th>آزمون‌های نهایی</th>
<th>میان ترم</th>
<th>ارزش‌های مستمر</th>
</tr>
</thead>
<tbody>
<tr>
<td>۴۰ رصد</td>
<td>آزمون‌های نهایی ۱۵ رصد</td>
<td>۲۰ رصد</td>
<td>۱۰ رصد</td>
</tr>
<tr>
<td>عامل‌های ۱۵ رصد</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
نام فارسی درس: آلودگی رسوبات دریایی
نام انگلیسی درس: Marine Sediment Pollution
تعداد واحد: ۲
نوع واحد: نظری
نوع درس: تخصصی انتخابی
پیشنهاد: تدارک
آموزش تکمیلی: آزمایشگاه
هدف درس: آشنایی دانشجویان با روش های تشخیص و تعیین منشأ آلودگی در رسوبات دریایی بمنظور بورود خطرات زیست محیطی

سرفصل درس:
- آشنایی با انواع وسایل نمونه بردار رسوب
- اهمیت اکساین خواصی رسوبات و مواد آلی در ثبت آلودگیها در رسوبات دریایی
- آشنایی با پیوندهای استاتوو، سولفیدی، الی، مقاوم و میان بین عنصر سنگین و رسوبات
- نقش باننیز های آب و اکسایش در آزاد سازی و یا ثبت عنصر در محیط های رسوبی
- نقش انواع رسوبات دریایی در جذب آلودگی
- شدت آلودگی رسوبات و اهمیت زیست محیطی آن
- روش های پاکسازی رسوبات آلوده
- آشنایی عملی دانشجویان با روش های تعیین آلودگی فلزات در رسوبات دریایی
- روش های شیمیایی جنگلی فلزات از پیوندهای رسوبی
- آشنایی دانشجویان با وسایل آزمایشگاهی

روش ارزیابی:

<table>
<thead>
<tr>
<th>پروژه</th>
<th>آزمون های نهایی</th>
<th>میان ترم</th>
<th>ارزیابی مستمر</th>
</tr>
</thead>
<tbody>
<tr>
<td>۲۰</td>
<td>۱۵</td>
<td>۱۵</td>
<td></td>
</tr>
</tbody>
</table>

منابع:
۱- کتاب راهنمای نمونه برداری و آنالیز سم شناختی رسوبات، کربسی، عبدالرضا و باتی، آیبا، چاپ دانشگاه تهران، ۱۳۸۴ (چاپ دوم)
نام فارسی درس: دینامیک زیست-زمین-شیمیایی اقیانوس
نام انگلیسی درس: Ocean Biogeochemical Dynamics

تعداد واحد: ۲
نوع واحد: نظری
نوع درس: تخصصی انتخابی
پیشنهاد: ندارد

آموزش تکمیلی: ندارد

هدف درس: ایجاد نواخت در زمینه دینامیک زیست-زمین-شیمیایی اقیانوس به عنوان یکشی جدید در مطالعات دریا که به صورت همزمان و اکتش و اندرکنش بیده های زیست شناسی و زمین شناسی و شیمیایی در محیط های دریایی و جغرافیا توجه و تجزیه مواد ارگانیک و اثرات لاین و اکتش ها در مقياس های مختلف را بر روی محیط مورد مطالعه قرار می دهد.

سرفصل درس: ۲۳ ساعت نظری و ۰ ساعت عملی
- ترکیبات شیمیایی دریا و اقیانوس
- توزیع ترکیبات شیمیایی در دریا و اقیانوس (Tracer conservation)
- بقای ترسر (بقاء ترسر)
- معادلات بقای ترسر
- جریانات در دریا
- تبادلات هوا و دریا
- تولید مواد ارگانیک در دریا (آکسبورت و اکسمینالیزیشن) (export, remineralization)
- مواد ارگانیکی و بروگشت به مواد معدنی (FSR)

فشار
- گردش مواد ارگانیک
- مدل های بروگشت به مواد معدنی
- بروگشت به مواد معدنی و دفن در رسوبات (گردش سیلیکات، گردش درشت، گردش مینیما کلسیم)
- گردش کربن، CO۲ و آب و هوا

روش ارزیابی:

<table>
<thead>
<tr>
<th>میان جمعران</th>
<th>ارزیابی مستمر</th>
<th>امتحان یا نهایی</th>
<th>پروژه</th>
</tr>
</thead>
<tbody>
<tr>
<td>۳۰ درصد</td>
<td>۳۰ درصد</td>
<td>آزمون های نهایی</td>
<td>۴۰ درصد</td>
</tr>
</tbody>
</table>

۲۲۱